Files
blackcoin-more/src/pow.cpp
2017-05-30 21:33:31 +02:00

127 lines
4.4 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "pow.h"
#include "arith_uint256.h"
#include "chain.h"
#include "primitives/block.h"
#include "uint256.h"
#include "util.h"
#include <stdio.h>
static arith_uint256 GetTargetLimit(int64_t nTime, bool fProofOfStake, const Consensus::Params& params)
{
uint256 nLimit;
if (fProofOfStake) {
if (params.IsProtocolV2(nTime))
nLimit = params.posLimitV2;
else
nLimit = params.posLimit;
} else {
nLimit = params.powLimit;
}
return UintToArith256(nLimit);
}
unsigned int GetNextTargetRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock, bool fProofOfStake, const Consensus::Params& params)
{
unsigned int nTargetLimit = UintToArith256(params.powLimit).GetCompact();
// Genesis block
if (pindexLast == NULL)
return nTargetLimit;
const CBlockIndex* pindexPrev = GetLastBlockIndex(pindexLast, fProofOfStake);
if (pindexPrev->pprev == NULL)
return nTargetLimit; // first block
const CBlockIndex* pindexPrevPrev = GetLastBlockIndex(pindexPrev->pprev, fProofOfStake);
if (pindexPrevPrev->pprev == NULL)
return nTargetLimit; // second block
return CalculateNextTargetRequired(pindexPrev, pindexPrevPrev->GetBlockTime(), params);
}
unsigned int CalculateNextTargetRequired(const CBlockIndex* pindexLast, int64_t nFirstBlockTime, const Consensus::Params& params)
{
if (params.fPowNoRetargeting)
return pindexLast->nBits;
int64_t nActualSpacing = pindexLast->GetBlockTime() - nFirstBlockTime;
int64_t nTargetSpacing = params.IsProtocolV2(pindexLast->GetBlockTime()) ? params.nTargetSpacing : params.nTargetSpacingV1;
// Limit adjustment step
if (pindexLast->GetBlockTime() > params.nProtocolV1RetargetingFixedTime && nActualSpacing < 0)
nActualSpacing = nTargetSpacing;
if (pindexLast->GetBlockTime() > params.nProtocolV3Time && nActualSpacing > nTargetSpacing*10)
nActualSpacing = nTargetSpacing*10;
// retarget with exponential moving toward target spacing
const arith_uint256 bnTargetLimit = GetTargetLimit(pindexLast->GetBlockTime(), pindexLast->IsProofOfStake(), params);
arith_uint256 bnNew;
bnNew.SetCompact(pindexLast->nBits);
int64_t nInterval = params.nTargetTimespan / nTargetSpacing;
bnNew *= ((nInterval - 1) * nTargetSpacing + nActualSpacing + nActualSpacing);
bnNew /= ((nInterval + 1) * nTargetSpacing);
if (bnNew <= 0 || bnNew > bnTargetLimit)
bnNew = bnTargetLimit;
return bnNew.GetCompact();
}
bool CheckProofOfWork(uint256 hash, unsigned int nBits, const Consensus::Params& params)
{
bool fNegative;
bool fOverflow;
arith_uint256 bnTarget;
bnTarget.SetCompact(nBits, &fNegative, &fOverflow);
// Check range
if (fNegative || bnTarget == 0 || fOverflow || bnTarget > UintToArith256(params.powLimit))
return error("CheckProofOfWork(): nBits below minimum work");
// Check proof of work matches claimed amount
if (UintToArith256(hash) > bnTarget)
return error("CheckProofOfWork(): hash doesn't match nBits");
return true;
}
arith_uint256 GetBlockProof(const CBlockIndex& block)
{
arith_uint256 bnTarget;
bool fNegative;
bool fOverflow;
bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow);
if (fNegative || fOverflow || bnTarget == 0)
return 0;
// We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256
// as it's too large for a arith_uint256. However, as 2**256 is at least as large
// as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1,
// or ~bnTarget / (nTarget+1) + 1.
return (~bnTarget / (bnTarget + 1)) + 1;
}
int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params)
{
arith_uint256 r;
int sign = 1;
if (to.nChainWork > from.nChainWork) {
r = to.nChainWork - from.nChainWork;
} else {
r = from.nChainWork - to.nChainWork;
sign = -1;
}
r = r * arith_uint256(params.nTargetSpacing) / GetBlockProof(tip);
if (r.bits() > 63) {
return sign * std::numeric_limits<int64_t>::max();
}
return sign * r.GetLow64();
}