// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "pow.h" #include "arith_uint256.h" #include "chain.h" #include "primitives/block.h" #include "uint256.h" #include "util.h" #include static arith_uint256 GetTargetLimit(int64_t nTime, bool fProofOfStake, const Consensus::Params& params) { uint256 nLimit; if (fProofOfStake) { if (params.IsProtocolV2(nTime)) nLimit = params.posLimitV2; else nLimit = params.posLimit; } else { nLimit = params.powLimit; } return UintToArith256(nLimit); } unsigned int GetNextTargetRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock, bool fProofOfStake, const Consensus::Params& params) { unsigned int nTargetLimit = UintToArith256(params.powLimit).GetCompact(); // Genesis block if (pindexLast == NULL) return nTargetLimit; const CBlockIndex* pindexPrev = GetLastBlockIndex(pindexLast, fProofOfStake); if (pindexPrev->pprev == NULL) return nTargetLimit; // first block const CBlockIndex* pindexPrevPrev = GetLastBlockIndex(pindexPrev->pprev, fProofOfStake); if (pindexPrevPrev->pprev == NULL) return nTargetLimit; // second block return CalculateNextTargetRequired(pindexPrev, pindexPrevPrev->GetBlockTime(), params); } unsigned int CalculateNextTargetRequired(const CBlockIndex* pindexLast, int64_t nFirstBlockTime, const Consensus::Params& params) { if (params.fPowNoRetargeting) return pindexLast->nBits; int64_t nActualSpacing = pindexLast->GetBlockTime() - nFirstBlockTime; int64_t nTargetSpacing = params.IsProtocolV2(pindexLast->GetBlockTime()) ? params.nTargetSpacing : params.nTargetSpacingV1; // Limit adjustment step if (pindexLast->GetBlockTime() > params.nProtocolV1RetargetingFixedTime && nActualSpacing < 0) nActualSpacing = nTargetSpacing; if (pindexLast->GetBlockTime() > params.nProtocolV3Time && nActualSpacing > nTargetSpacing*10) nActualSpacing = nTargetSpacing*10; // retarget with exponential moving toward target spacing const arith_uint256 bnTargetLimit = GetTargetLimit(pindexLast->GetBlockTime(), pindexLast->IsProofOfStake(), params); arith_uint256 bnNew; bnNew.SetCompact(pindexLast->nBits); int64_t nInterval = params.nTargetTimespan / nTargetSpacing; bnNew *= ((nInterval - 1) * nTargetSpacing + nActualSpacing + nActualSpacing); bnNew /= ((nInterval + 1) * nTargetSpacing); if (bnNew <= 0 || bnNew > bnTargetLimit) bnNew = bnTargetLimit; return bnNew.GetCompact(); } bool CheckProofOfWork(uint256 hash, unsigned int nBits, const Consensus::Params& params) { bool fNegative; bool fOverflow; arith_uint256 bnTarget; bnTarget.SetCompact(nBits, &fNegative, &fOverflow); // Check range if (fNegative || bnTarget == 0 || fOverflow || bnTarget > UintToArith256(params.powLimit)) return error("CheckProofOfWork(): nBits below minimum work"); // Check proof of work matches claimed amount if (UintToArith256(hash) > bnTarget) return error("CheckProofOfWork(): hash doesn't match nBits"); return true; } arith_uint256 GetBlockProof(const CBlockIndex& block) { arith_uint256 bnTarget; bool fNegative; bool fOverflow; bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow); if (fNegative || fOverflow || bnTarget == 0) return 0; // We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256 // as it's too large for a arith_uint256. However, as 2**256 is at least as large // as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1, // or ~bnTarget / (nTarget+1) + 1. return (~bnTarget / (bnTarget + 1)) + 1; } int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params) { arith_uint256 r; int sign = 1; if (to.nChainWork > from.nChainWork) { r = to.nChainWork - from.nChainWork; } else { r = from.nChainWork - to.nChainWork; sign = -1; } r = r * arith_uint256(params.nTargetSpacing) / GetBlockProof(tip); if (r.bits() > 63) { return sign * std::numeric_limits::max(); } return sign * r.GetLow64(); }