- lf t55xx brute (tries bruteforcing a range of pwds - lf t55xx chk (uses dictionary file or RDV4 flashmem) FIX: adjust lf sim (@marshmellow42) see7008cf9c15"attempt to speed up the loops waiting for carrier signal to go high or low by only checking for a halt (button press or usbpol) every 256th loop iteration. some users were experiencing modulating reactions to be too slow. ADD: 'lf t55xx chk' It uses @marshmellows42 idea behind commit (6178b085a0) With calculating a baseline (read block0 32times and average the signal-ish) and sampling only 1024 signal data. The algo then proceeds to calc the average and keep track of the candidate which is given the most difference in signal data average value. I do some squaring and shifting for this. The candidate is then send back to client to be tested properly with trymodulation like before. This seems to work good on t55xx card which has a ASK configuration. WORK-IN-PROGRESS
2165 lines
60 KiB
C
2165 lines
60 KiB
C
//-----------------------------------------------------------------------------
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Miscellaneous routines for low frequency tag operations.
|
|
// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
|
|
// Also routines for raw mode reading/simulating of LF waveform
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "util.h"
|
|
#include "hitag2.h"
|
|
#include "crc16.h"
|
|
#include "string.h"
|
|
#include "lfdemod.h"
|
|
#include "lfsampling.h"
|
|
#include "protocols.h"
|
|
#include "usb_cdc.h" // for usb_poll_validate_length
|
|
#include "common.h"
|
|
#include "flashmem.h" // persistence on mem
|
|
|
|
#ifndef SHORT_COIL
|
|
# define SHORT_COIL() LOW(GPIO_SSC_DOUT)
|
|
#endif
|
|
#ifndef OPEN_COIL
|
|
# define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
|
|
#endif
|
|
|
|
//#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
|
|
//#define WRITE_GAP 8*8 // 17*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
|
|
//#define WRITE_0 15*8 // 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
|
|
//#define WRITE_1 47*8 // 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
|
|
//#define READ_GAP 15*8
|
|
|
|
// VALUES TAKEN FROM EM4x function: SendForward
|
|
// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
|
|
// WRITE_GAP = 128; (16*8)
|
|
// WRITE_1 = 256 32*8; (32*8)
|
|
|
|
// These timings work for 4469/4269/4305 (with the 55*8 above)
|
|
// WRITE_0 = 23*8 , 9*8
|
|
|
|
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
|
|
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
|
|
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
|
|
// T0 = TIMER_CLOCK1 / 125000 = 192
|
|
// 1 Cycle = 8 microseconds(us) == 1 field clock
|
|
|
|
// new timer:
|
|
// = 1us = 1.5ticks
|
|
// 1fc = 8us = 12ticks
|
|
/*
|
|
Default LF T55xx config is set to:
|
|
startgap = 31*8
|
|
writegap = 17*8
|
|
write_0 = 15*8
|
|
write_1 = 47*8
|
|
read_gap = 15*8
|
|
*/
|
|
t55xx_config t_config = { 29*8, 17*8, 15*8, 47*8, 15*8 } ;
|
|
|
|
void printT55xxConfig(void) {
|
|
Dbprintf("LF T55XX config");
|
|
Dbprintf(" [a] startgap............%d*8 (%d)", t_config.start_gap/8, t_config.start_gap);
|
|
Dbprintf(" [b] writegap............%d*8 (%d)", t_config.write_gap/8, t_config.write_gap);
|
|
Dbprintf(" [c] write_0.............%d*8 (%d)", t_config.write_0/8, t_config.write_0);
|
|
Dbprintf(" [d] write_1.............%d*8 (%d)", t_config.write_1/8, t_config.write_1);
|
|
Dbprintf(" [e] readgap.............%d*8 (%d)", t_config.read_gap/8, t_config.read_gap);
|
|
}
|
|
|
|
void setT55xxConfig(uint8_t arg0, t55xx_config *c) {
|
|
|
|
if (c->start_gap != 0) t_config.start_gap = c->start_gap;
|
|
if (c->write_gap != 0) t_config.write_gap = c->write_gap;
|
|
if (c->write_0 != 0) t_config.write_0 = c->write_0;
|
|
if (c->write_1 != 0) t_config.write_1 = c->write_1;
|
|
if (c->read_gap != 0) t_config.read_gap = c->read_gap;
|
|
|
|
printT55xxConfig();
|
|
|
|
#if WITH_FLASH
|
|
// shall persist to flashmem
|
|
if (arg0 == 0) {
|
|
return;
|
|
}
|
|
|
|
if (!FlashInit()) {
|
|
return;
|
|
}
|
|
|
|
uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN);
|
|
Flash_CheckBusy(BUSY_TIMEOUT);
|
|
uint16_t res = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
|
|
if ( res == 0) {
|
|
FlashStop();
|
|
BigBuf_free();
|
|
return;
|
|
}
|
|
|
|
memcpy(buf, &t_config, T55XX_CONFIG_LEN);
|
|
|
|
Flash_CheckBusy(BUSY_TIMEOUT);
|
|
Flash_WriteEnable();
|
|
Flash_Erase4k(3, 0xD);
|
|
res = Flash_Write(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
|
|
|
|
if ( res == T55XX_CONFIG_LEN && MF_DBGLEVEL > 1) {
|
|
DbpString("T55XX Config save success");
|
|
}
|
|
|
|
BigBuf_free();
|
|
#endif
|
|
}
|
|
|
|
t55xx_config* getT55xxConfig(void) {
|
|
return &t_config;
|
|
}
|
|
|
|
void loadT55xxConfig(void) {
|
|
#if WITH_FLASH
|
|
if (!FlashInit()) {
|
|
return;
|
|
}
|
|
|
|
uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN);
|
|
|
|
Flash_CheckBusy(BUSY_TIMEOUT);
|
|
uint16_t isok = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
|
|
FlashStop();
|
|
|
|
// verify read mem is actual data.
|
|
uint8_t cntA = T55XX_CONFIG_LEN, cntB = T55XX_CONFIG_LEN;
|
|
for (int i=0; i< T55XX_CONFIG_LEN; i++) {
|
|
if ( buf[i] == 0xFF) cntA--;
|
|
if ( buf[i] == 0x00) cntB--;
|
|
}
|
|
if ( !cntA || !cntB ) {
|
|
BigBuf_free();
|
|
return;
|
|
}
|
|
|
|
memcpy((uint8_t *)&t_config, buf, T55XX_CONFIG_LEN);
|
|
|
|
if ( isok == T55XX_CONFIG_LEN) {
|
|
if (MF_DBGLEVEL > 1) DbpString("T55XX Config load success");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Function to do a modulation and then get samples.
|
|
* @param delay_off
|
|
* @param period_0
|
|
* @param period_1
|
|
* @param command (in binary char array)
|
|
*/
|
|
void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) {
|
|
|
|
// start timer
|
|
StartTicks();
|
|
|
|
// use lf config settings
|
|
sample_config *sc = getSamplingConfig();
|
|
|
|
// Make sure the tag is reset
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitMS(500);
|
|
|
|
// clear read buffer
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
LFSetupFPGAForADC(sc->divisor, 1);
|
|
|
|
// little more time for the tag to fully power up
|
|
WaitMS(200);
|
|
|
|
// if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
|
|
bool bitbang = delay_off == 0;
|
|
// now modulate the reader field
|
|
if (bitbang) {
|
|
// HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
|
|
uint8_t hack_cnt = 7;
|
|
if (period_0 < hack_cnt || period_1 < hack_cnt) {
|
|
DbpString("[!] Warning periods cannot be less than 7us in bit bang mode");
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
return;
|
|
}
|
|
|
|
// hack2 needed--- it appears to take about 8-16us to turn the antenna back on
|
|
// leading to ~ 1 to 2 125khz samples extra in every off period
|
|
// so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
|
|
// but is this time different for every antenna or other hw builds??? more testing needed
|
|
|
|
// prime cmd_len to save time comparing strings while modulating
|
|
int cmd_len = 0;
|
|
while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
|
|
cmd_len++;
|
|
|
|
int counter = 0;
|
|
bool off = false;
|
|
for (counter = 0; counter < cmd_len; counter++) {
|
|
// if cmd = 0 then turn field off
|
|
if (command[counter] == '0') {
|
|
// if field already off leave alone (affects timing otherwise)
|
|
if (off == false) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
off = true;
|
|
}
|
|
// note we appear to take about 7us to switch over (or run the if statements/loop...)
|
|
WaitUS(period_0 - hack_cnt);
|
|
// else if cmd = 1 then turn field on
|
|
} else {
|
|
// if field already on leave alone (affects timing otherwise)
|
|
if (off) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
LED_D_ON();
|
|
off = false;
|
|
}
|
|
// note we appear to take about 7us to switch over (or run the if statements/loop...)
|
|
WaitUS(period_1 - hack_cnt);
|
|
}
|
|
}
|
|
} else { // old mode of cmd read using delay as off period
|
|
while(*command != '\0' && *command != ' ') {
|
|
LED_D_ON();
|
|
if (*(command++) == '0')
|
|
TurnReadLFOn(period_0);
|
|
else
|
|
TurnReadLFOn(period_1);
|
|
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(delay_off);
|
|
}
|
|
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
|
|
}
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
|
|
// now do the read
|
|
DoAcquisition_config(false, 0);
|
|
|
|
// Turn off antenna
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
// tell client we are done
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
}
|
|
|
|
/* blank r/w tag data stream
|
|
...0000000000000000 01111111
|
|
1010101010101010101010101010101010101010101010101010101010101010
|
|
0011010010100001
|
|
01111111
|
|
101010101010101[0]000...
|
|
|
|
[5555fe852c5555555555555555fe0000]
|
|
*/
|
|
void ReadTItag(void)
|
|
{
|
|
StartTicks();
|
|
// some hardcoded initial params
|
|
// when we read a TI tag we sample the zerocross line at 2Mhz
|
|
// TI tags modulate a 1 as 16 cycles of 123.2Khz
|
|
// TI tags modulate a 0 as 16 cycles of 134.2Khz
|
|
#define FSAMPLE 2000000
|
|
#define FREQLO 123200
|
|
#define FREQHI 134200
|
|
|
|
signed char *dest = (signed char *)BigBuf_get_addr();
|
|
uint16_t n = BigBuf_max_traceLen();
|
|
// 128 bit shift register [shift3:shift2:shift1:shift0]
|
|
uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
|
|
|
|
int i, cycles=0, samples=0;
|
|
// how many sample points fit in 16 cycles of each frequency
|
|
uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
|
|
// when to tell if we're close enough to one freq or another
|
|
uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
|
|
|
|
// TI tags charge at 134.2Khz
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
|
|
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
|
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
|
// whether we're modulating the antenna (high)
|
|
// or listening to the antenna (low)
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
|
|
|
// get TI tag data into the buffer
|
|
AcquireTiType();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
for (i=0; i<n-1; i++) {
|
|
// count cycles by looking for lo to hi zero crossings
|
|
if ( (dest[i]<0) && (dest[i+1]>0) ) {
|
|
cycles++;
|
|
// after 16 cycles, measure the frequency
|
|
if (cycles>15) {
|
|
cycles=0;
|
|
samples=i-samples; // number of samples in these 16 cycles
|
|
|
|
// TI bits are coming to us lsb first so shift them
|
|
// right through our 128 bit right shift register
|
|
shift0 = (shift0>>1) | (shift1 << 31);
|
|
shift1 = (shift1>>1) | (shift2 << 31);
|
|
shift2 = (shift2>>1) | (shift3 << 31);
|
|
shift3 >>= 1;
|
|
|
|
// check if the cycles fall close to the number
|
|
// expected for either the low or high frequency
|
|
if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
|
|
// low frequency represents a 1
|
|
shift3 |= (1<<31);
|
|
} else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
|
|
// high frequency represents a 0
|
|
} else {
|
|
// probably detected a gay waveform or noise
|
|
// use this as gaydar or discard shift register and start again
|
|
shift3 = shift2 = shift1 = shift0 = 0;
|
|
}
|
|
samples = i;
|
|
|
|
// for each bit we receive, test if we've detected a valid tag
|
|
|
|
// if we see 17 zeroes followed by 6 ones, we might have a tag
|
|
// remember the bits are backwards
|
|
if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
|
|
// if start and end bytes match, we have a tag so break out of the loop
|
|
if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
|
|
cycles = 0xF0B; //use this as a flag (ugly but whatever)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if flag is set we have a tag
|
|
if (cycles!=0xF0B) {
|
|
DbpString("Info: No valid tag detected.");
|
|
} else {
|
|
// put 64 bit data into shift1 and shift0
|
|
shift0 = (shift0>>24) | (shift1 << 8);
|
|
shift1 = (shift1>>24) | (shift2 << 8);
|
|
|
|
// align 16 bit crc into lower half of shift2
|
|
shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
|
|
|
|
// if r/w tag, check ident match
|
|
if (shift3 & (1<<15) ) {
|
|
DbpString("Info: TI tag is rewriteable");
|
|
// only 15 bits compare, last bit of ident is not valid
|
|
if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
|
|
DbpString("Error: Ident mismatch!");
|
|
} else {
|
|
DbpString("Info: TI tag ident is valid");
|
|
}
|
|
} else {
|
|
DbpString("Info: TI tag is readonly");
|
|
}
|
|
|
|
// WARNING the order of the bytes in which we calc crc below needs checking
|
|
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
|
|
// bytes in reverse or something
|
|
// calculate CRC
|
|
uint32_t crc=0;
|
|
|
|
crc = update_crc16(crc, (shift0)&0xff);
|
|
crc = update_crc16(crc, (shift0>>8)&0xff);
|
|
crc = update_crc16(crc, (shift0>>16)&0xff);
|
|
crc = update_crc16(crc, (shift0>>24)&0xff);
|
|
crc = update_crc16(crc, (shift1)&0xff);
|
|
crc = update_crc16(crc, (shift1>>8)&0xff);
|
|
crc = update_crc16(crc, (shift1>>16)&0xff);
|
|
crc = update_crc16(crc, (shift1>>24)&0xff);
|
|
|
|
Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
|
|
if (crc != (shift2&0xffff)) {
|
|
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
|
|
} else {
|
|
DbpString("Info: CRC is good");
|
|
}
|
|
}
|
|
StopTicks();
|
|
}
|
|
|
|
void WriteTIbyte(uint8_t b)
|
|
{
|
|
int i = 0;
|
|
|
|
// modulate 8 bits out to the antenna
|
|
for (i=0; i<8; i++)
|
|
{
|
|
if ( b & ( 1 << i ) ) {
|
|
// stop modulating antenna 1ms
|
|
LOW(GPIO_SSC_DOUT);
|
|
WaitUS(1000);
|
|
// modulate antenna 1ms
|
|
HIGH(GPIO_SSC_DOUT);
|
|
WaitUS(1000);
|
|
} else {
|
|
// stop modulating antenna 0.3ms
|
|
LOW(GPIO_SSC_DOUT);
|
|
WaitUS(300);
|
|
// modulate antenna 1.7ms
|
|
HIGH(GPIO_SSC_DOUT);
|
|
WaitUS(1700);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AcquireTiType(void)
|
|
{
|
|
int i, j, n;
|
|
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
|
|
// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
|
|
#define TIBUFLEN 1250
|
|
|
|
// clear buffer
|
|
uint32_t *buf = (uint32_t *)BigBuf_get_addr();
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_ext(false);
|
|
|
|
// Set up the synchronous serial port
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
|
|
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
|
|
|
|
// steal this pin from the SSP and use it to control the modulation
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
|
|
|
|
// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
|
|
// 48/2 = 24 MHz clock must be divided by 12
|
|
AT91C_BASE_SSC->SSC_CMR = 12;
|
|
|
|
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
|
|
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
|
|
// Transmit Clock Mode Register
|
|
AT91C_BASE_SSC->SSC_TCMR = 0;
|
|
// Transmit Frame Mode Register
|
|
AT91C_BASE_SSC->SSC_TFMR = 0;
|
|
// iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
|
|
LED_D_ON();
|
|
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
|
|
// Charge TI tag for 50ms.
|
|
WaitMS(50);
|
|
|
|
// stop modulating antenna and listen
|
|
LOW(GPIO_SSC_DOUT);
|
|
|
|
LED_D_OFF();
|
|
|
|
i = 0;
|
|
for (;;) {
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
|
|
i++;
|
|
if (i >= TIBUFLEN) break;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
// return stolen pin to SSP
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
|
|
|
|
char *dest = (char *)BigBuf_get_addr();
|
|
n = TIBUFLEN * 32;
|
|
|
|
// unpack buffer
|
|
for (i = TIBUFLEN-1; i >= 0; i--) {
|
|
for (j = 0; j < 32; j++) {
|
|
if(buf[i] & (1 << j)) {
|
|
dest[--n] = 1;
|
|
} else {
|
|
dest[--n] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// reset SSC
|
|
FpgaSetupSsc();
|
|
}
|
|
|
|
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
|
|
// if crc provided, it will be written with the data verbatim (even if bogus)
|
|
// if not provided a valid crc will be computed from the data and written.
|
|
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
|
|
{
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
if(crc == 0) {
|
|
crc = update_crc16(crc, (idlo)&0xff);
|
|
crc = update_crc16(crc, (idlo>>8)&0xff);
|
|
crc = update_crc16(crc, (idlo>>16)&0xff);
|
|
crc = update_crc16(crc, (idlo>>24)&0xff);
|
|
crc = update_crc16(crc, (idhi)&0xff);
|
|
crc = update_crc16(crc, (idhi>>8)&0xff);
|
|
crc = update_crc16(crc, (idhi>>16)&0xff);
|
|
crc = update_crc16(crc, (idhi>>24)&0xff);
|
|
}
|
|
Dbprintf("Writing to tag: %x%08x, crc=%x", idhi, idlo, crc);
|
|
|
|
// TI tags charge at 134.2Khz
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
|
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
|
// whether we're modulating the antenna (high)
|
|
// or listening to the antenna (low)
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
|
StartTicks();
|
|
|
|
LED_A_ON();
|
|
|
|
// steal this pin from the SSP and use it to control the modulation
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
// writing algorithm:
|
|
// a high bit consists of a field off for 1ms and field on for 1ms
|
|
// a low bit consists of a field off for 0.3ms and field on for 1.7ms
|
|
// initiate a charge time of 50ms (field on) then immediately start writing bits
|
|
// start by writing 0xBB (keyword) and 0xEB (password)
|
|
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
|
|
// finally end with 0x0300 (write frame)
|
|
// all data is sent lsb first
|
|
// finish with 50ms programming time
|
|
|
|
// modulate antenna
|
|
HIGH(GPIO_SSC_DOUT);
|
|
WaitMS(50); // charge time
|
|
|
|
WriteTIbyte(0xbb); // keyword
|
|
WriteTIbyte(0xeb); // password
|
|
WriteTIbyte( (idlo )&0xff );
|
|
WriteTIbyte( (idlo>>8 )&0xff );
|
|
WriteTIbyte( (idlo>>16)&0xff );
|
|
WriteTIbyte( (idlo>>24)&0xff );
|
|
WriteTIbyte( (idhi )&0xff );
|
|
WriteTIbyte( (idhi>>8 )&0xff );
|
|
WriteTIbyte( (idhi>>16)&0xff );
|
|
WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
|
|
WriteTIbyte( (crc )&0xff ); // crc lo
|
|
WriteTIbyte( (crc>>8 )&0xff ); // crc hi
|
|
WriteTIbyte(0x00); // write frame lo
|
|
WriteTIbyte(0x03); // write frame hi
|
|
HIGH(GPIO_SSC_DOUT);
|
|
WaitMS(50); // programming time
|
|
|
|
LED_A_OFF();
|
|
|
|
// get TI tag data into the buffer
|
|
AcquireTiType();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Now use `lf ti read` to check");
|
|
StopTicks();
|
|
}
|
|
|
|
// note: a call to FpgaDownloadAndGo(FPGA_BITSTREAM_LF) must be done before, but
|
|
// this may destroy the bigbuf so be sure this is called before calling SimulateTagLowFrequencyEx
|
|
void SimulateTagLowFrequencyEx(int period, int gap, int ledcontrol, int numcycles) {
|
|
|
|
// start us timer
|
|
StartTicks();
|
|
|
|
//FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
|
|
WaitMS(20);
|
|
|
|
int i = 0, x = 0;
|
|
uint8_t *buf = BigBuf_get_addr();
|
|
|
|
// set frequency, get values from 'lf config' command
|
|
sample_config *sc = getSamplingConfig();
|
|
|
|
if ( (sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255) )
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
|
else if (sc->divisor == 0)
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
|
else
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
|
|
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
|
|
|
|
uint8_t check = 1;
|
|
|
|
for(;;) {
|
|
|
|
if ( numcycles > -1 ) {
|
|
if ( x != numcycles ) {
|
|
++x;
|
|
} else {
|
|
// exit without turning of field
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (ledcontrol) LED_D_ON();
|
|
|
|
// wait until SSC_CLK goes HIGH
|
|
// used as a simple detection of a reader field?
|
|
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
|
|
WDT_HIT();
|
|
if ( !check ) {
|
|
if ( usb_poll_validate_length() || BUTTON_PRESS() )
|
|
goto OUT;
|
|
}
|
|
++check; }
|
|
|
|
if (buf[i])
|
|
OPEN_COIL();
|
|
else
|
|
SHORT_COIL();
|
|
|
|
//wait until SSC_CLK goes LOW
|
|
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
|
|
WDT_HIT();
|
|
if ( !check ) {
|
|
if ( usb_poll_validate_length() || BUTTON_PRESS() )
|
|
goto OUT;
|
|
}
|
|
++check;
|
|
}
|
|
|
|
i++;
|
|
if (i == period) {
|
|
i = 0;
|
|
if (gap) {
|
|
SHORT_COIL();
|
|
WaitUS(gap);
|
|
}
|
|
}
|
|
|
|
if (ledcontrol) LED_D_OFF();
|
|
}
|
|
OUT:
|
|
StopTicks();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
}
|
|
|
|
void SimulateTagLowFrequency(int period, int gap, int ledcontrol) {
|
|
SimulateTagLowFrequencyEx(period, gap, ledcontrol, -1);
|
|
}
|
|
|
|
|
|
#define DEBUG_FRAME_CONTENTS 1
|
|
void SimulateTagLowFrequencyBidir(int divisor, int t0)
|
|
{
|
|
}
|
|
// compose fc/5 fc/8 waveform (FSK1)
|
|
|
|
// compose fc/8 fc/10 waveform (FSK2)
|
|
// also manchester,
|
|
static void fc(int c, int *n)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
int idx;
|
|
|
|
// for when we want an fc8 pattern every 4 logical bits
|
|
if (c == 0) {
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
}
|
|
|
|
// an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
|
|
if (c == 8) {
|
|
for (idx=0; idx < 6; idx++) {
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
}
|
|
}
|
|
|
|
// an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
|
|
if (c == 10) {
|
|
for (idx = 0; idx < 5; idx++) {
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 1;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
dest[((*n)++)] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// special start of frame marker containing invalid bit sequences
|
|
// this one is focused on HID, with manchester encoding.
|
|
static void fcSTT(int *n) {
|
|
fc(8, n); fc(8, n); // invalid
|
|
fc(8, n); fc(10, n); // logical 0
|
|
fc(10, n); fc(10, n); // invalid
|
|
fc(8, n); fc(10, n); // logical 0
|
|
}
|
|
|
|
// compose fc/X fc/Y waveform (FSKx)
|
|
static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfFC = fc >> 1;
|
|
uint8_t wavesPerClock = clock/fc;
|
|
uint8_t mod = clock % fc; //modifier
|
|
uint8_t modAdj = fc/mod; //how often to apply modifier
|
|
bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk = true;
|
|
|
|
// loop through clock - step field clock
|
|
for (uint8_t idx=0; idx < wavesPerClock; idx++){
|
|
// put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
|
|
memset(dest + (*n), 0, fc - halfFC); //in case of odd number use extra here
|
|
memset(dest + (*n) + (fc - halfFC), 1, halfFC);
|
|
*n += fc;
|
|
}
|
|
if (mod > 0) (*modCnt)++;
|
|
|
|
if ((mod > 0) && modAdjOk){ //fsk2
|
|
if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
|
|
memset(dest + (*n), 0, fc - halfFC);
|
|
memset(dest + (*n) + ( fc - halfFC), 1, halfFC);
|
|
*n += fc;
|
|
}
|
|
}
|
|
if (mod > 0 && !modAdjOk){ //fsk1
|
|
memset(dest + (*n), 0, mod - (mod >> 1));
|
|
memset(dest + (*n) + (mod - (mod >> 1)), 1, mod >> 1);
|
|
*n += mod;
|
|
}
|
|
}
|
|
|
|
// prepare a waveform pattern in the buffer based on the ID given then
|
|
// simulate a HID tag until the button is pressed
|
|
void CmdHIDsimTAGEx( uint32_t hi, uint32_t lo, int ledcontrol, int numcycles) {
|
|
|
|
if (hi > 0xFFF) {
|
|
DbpString("[!] tags can only have 44 bits. - USE lf simfsk for larger tags");
|
|
return;
|
|
}
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
set_tracing(false);
|
|
|
|
int n = 0, i = 0;
|
|
/*
|
|
HID tag bitstream format
|
|
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
|
|
A 1 bit is represented as 6 fc8 and 5 fc10 patterns (manchester 10) during 2 clock periods. (1bit = 1clock period)
|
|
A 0 bit is represented as 5 fc10 and 6 fc8 patterns (manchester 01)
|
|
A fc8 is inserted before every 4 bits
|
|
A special start of frame pattern is used consisting a0b0 where a and b are neither 0
|
|
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
|
|
|
|
FSK2a
|
|
bit 1 = fc10
|
|
bit 0 = fc8
|
|
*/
|
|
|
|
fc(0, &n);
|
|
|
|
// special start of frame marker containing invalid bit sequences
|
|
fcSTT(&n);
|
|
|
|
// manchester encode bits 43 to 32
|
|
for (i = 11; i >= 0; i--) {
|
|
|
|
if ((i % 4) == 3) fc(0, &n);
|
|
|
|
if ((hi >> i) & 1) {
|
|
fc(10, &n); fc(8, &n); // low-high transition
|
|
} else {
|
|
fc(8, &n); fc(10, &n); // high-low transition
|
|
}
|
|
}
|
|
|
|
// manchester encode bits 31 to 0
|
|
for (i = 31; i >= 0; i--) {
|
|
|
|
if ((i % 4) == 3) fc(0, &n);
|
|
|
|
if (( lo >> i ) & 1) {
|
|
fc(10, &n); fc(8, &n); // low-high transition
|
|
} else {
|
|
fc(8, &n); fc(10, &n); // high-low transition
|
|
}
|
|
}
|
|
|
|
if (ledcontrol) LED_A_ON();
|
|
SimulateTagLowFrequencyEx(n, 0, ledcontrol, numcycles);
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
void CmdHIDsimTAG( uint32_t hi, uint32_t lo, int ledcontrol) {
|
|
CmdHIDsimTAGEx( hi, lo, ledcontrol, -1);
|
|
DbpString("[!] simulation finished");
|
|
}
|
|
|
|
// prepare a waveform pattern in the buffer based on the ID given then
|
|
// simulate a FSK tag until the button is pressed
|
|
// arg1 contains fcHigh and fcLow, arg2 contains STT marker and clock
|
|
void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *bits) {
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
|
|
// free eventually allocated BigBuf memory
|
|
BigBuf_free(); BigBuf_Clear_ext(false);
|
|
clear_trace();
|
|
set_tracing(false);
|
|
|
|
int ledcontrol = 1, n = 0, i = 0;
|
|
uint8_t fcHigh = arg1 >> 8;
|
|
uint8_t fcLow = arg1 & 0xFF;
|
|
uint16_t modCnt = 0;
|
|
uint8_t clk = arg2 & 0xFF;
|
|
uint8_t stt = (arg2 >> 8) & 1;
|
|
|
|
if ( stt ) {
|
|
//int fsktype = ( fcHigh == 8 && fcLow == 5) ? 1 : 2;
|
|
//fcSTT(&n);
|
|
}
|
|
|
|
for (i=0; i<size; i++){
|
|
if (bits[i])
|
|
fcAll(fcLow, &n, clk, &modCnt);
|
|
else
|
|
fcAll(fcHigh, &n, clk, &modCnt);
|
|
}
|
|
|
|
WDT_HIT();
|
|
|
|
Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, STT: %d, n: %d", fcHigh, fcLow, clk, stt, n);
|
|
|
|
if (ledcontrol) LED_A_ON();
|
|
SimulateTagLowFrequency(n, 0, ledcontrol);
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
// compose ask waveform for one bit(ASK)
|
|
static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfClk = clock/2;
|
|
// c = current bit 1 or 0
|
|
if (manchester==1){
|
|
memset(dest+(*n), c, halfClk);
|
|
memset(dest+(*n) + halfClk, c^1, halfClk);
|
|
} else {
|
|
memset(dest+(*n), c, clock);
|
|
}
|
|
*n += clock;
|
|
}
|
|
|
|
static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfClk = clock/2;
|
|
if (c){
|
|
memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
|
|
memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
|
|
} else {
|
|
memset(dest+(*n), c ^ *phase, clock);
|
|
*phase ^= 1;
|
|
}
|
|
*n += clock;
|
|
}
|
|
|
|
static void stAskSimBit(int *n, uint8_t clock) {
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfClk = clock/2;
|
|
//ST = .5 high .5 low 1.5 high .5 low 1 high
|
|
memset(dest+(*n), 1, halfClk);
|
|
memset(dest+(*n) + halfClk, 0, halfClk);
|
|
memset(dest+(*n) + clock, 1, clock + halfClk);
|
|
memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
|
|
memset(dest+(*n) + clock*3, 1, clock);
|
|
*n += clock*4;
|
|
}
|
|
|
|
// args clock, ask/man or askraw, invert, transmission separator
|
|
void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
|
|
{
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
set_tracing(false);
|
|
|
|
int ledcontrol = 1, n = 0, i = 0;
|
|
uint8_t clk = (arg1 >> 8) & 0xFF;
|
|
uint8_t encoding = arg1 & 0xFF;
|
|
uint8_t separator = arg2 & 1;
|
|
uint8_t invert = (arg2 >> 8) & 1;
|
|
|
|
if (encoding == 2){ //biphase
|
|
uint8_t phase = 0;
|
|
for (i=0; i<size; i++){
|
|
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
|
|
}
|
|
if (phase == 1) { //run a second set inverted to keep phase in check
|
|
for (i=0; i<size; i++){
|
|
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
|
|
}
|
|
}
|
|
} else { // ask/manchester || ask/raw
|
|
for (i=0; i<size; i++){
|
|
askSimBit(BitStream[i]^invert, &n, clk, encoding);
|
|
}
|
|
if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
|
|
for (i=0; i<size; i++){
|
|
askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
|
|
}
|
|
}
|
|
}
|
|
if (separator==1 && encoding == 1)
|
|
stAskSimBit(&n, clk);
|
|
else if (separator==1)
|
|
Dbprintf("sorry but separator option not yet available");
|
|
|
|
WDT_HIT();
|
|
|
|
Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
|
|
|
|
if (ledcontrol) LED_A_ON();
|
|
SimulateTagLowFrequency(n, 0, ledcontrol);
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
//carrier can be 2,4 or 8
|
|
static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
|
|
{
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint8_t halfWave = waveLen/2;
|
|
//uint8_t idx;
|
|
int i = 0;
|
|
if (phaseChg){
|
|
// write phase change
|
|
memset(dest+(*n), *curPhase^1, halfWave);
|
|
memset(dest+(*n) + halfWave, *curPhase, halfWave);
|
|
*n += waveLen;
|
|
*curPhase ^= 1;
|
|
i += waveLen;
|
|
}
|
|
//write each normal clock wave for the clock duration
|
|
for (; i < clk; i+=waveLen){
|
|
memset(dest+(*n), *curPhase, halfWave);
|
|
memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
|
|
*n += waveLen;
|
|
}
|
|
}
|
|
|
|
// args clock, carrier, invert,
|
|
void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
|
|
{
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
set_tracing(false);
|
|
|
|
int ledcontrol = 1, n = 0, i = 0;
|
|
uint8_t clk = arg1 >> 8;
|
|
uint8_t carrier = arg1 & 0xFF;
|
|
uint8_t invert = arg2 & 0xFF;
|
|
uint8_t curPhase = 0;
|
|
for (i=0; i<size; i++){
|
|
if (BitStream[i] == curPhase){
|
|
pskSimBit(carrier, &n, clk, &curPhase, false);
|
|
} else {
|
|
pskSimBit(carrier, &n, clk, &curPhase, true);
|
|
}
|
|
}
|
|
|
|
WDT_HIT();
|
|
|
|
Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
|
|
|
|
if (ledcontrol) LED_A_ON();
|
|
SimulateTagLowFrequency(n, 0, ledcontrol);
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
|
|
void CmdHIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
size_t size = 0;
|
|
uint32_t hi2 = 0, hi = 0, lo = 0;
|
|
int idx = 0;
|
|
int dummyIdx = 0;
|
|
// Configure to go in 125Khz listen mode
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
//clear read buffer
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
while( !BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
|
|
WDT_HIT();
|
|
if (ledcontrol) LED_A_ON();
|
|
|
|
DoAcquisition_default(-1, true);
|
|
// FSK demodulator
|
|
size = 50*128*2; //big enough to catch 2 sequences of largest format
|
|
idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
|
|
if ( idx < 0 ) continue;
|
|
|
|
if (idx > 0 && lo > 0 && (size == 96 || size == 192)){
|
|
// go over previously decoded manchester data and decode into usable tag ID
|
|
if (hi2 != 0){ //extra large HID tags 88/192 bits
|
|
Dbprintf("TAG ID: %x%08x%08x (%d)",
|
|
hi2,
|
|
hi,
|
|
lo,
|
|
(lo >> 1) & 0xFFFF
|
|
);
|
|
} else { //standard HID tags 44/96 bits
|
|
uint8_t bitlen = 0;
|
|
uint32_t fc = 0;
|
|
uint32_t cardnum = 0;
|
|
|
|
if (((hi >> 5) & 1) == 1){//if bit 38 is set then < 37 bit format is used
|
|
uint32_t lo2 = 0;
|
|
lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
|
|
uint8_t idx3 = 1;
|
|
while (lo2 > 1){ //find last bit set to 1 (format len bit)
|
|
lo2 >>= 1;
|
|
idx3++;
|
|
}
|
|
bitlen = idx3 + 19;
|
|
fc = 0;
|
|
cardnum = 0;
|
|
if (bitlen == 26){
|
|
cardnum = (lo >> 1) & 0xFFFF;
|
|
fc = (lo >> 17) & 0xFF;
|
|
}
|
|
if (bitlen == 37){
|
|
cardnum = (lo >> 1 ) & 0x7FFFF;
|
|
fc = ((hi & 0xF) << 12) | (lo >> 20);
|
|
}
|
|
if (bitlen == 34){
|
|
cardnum = (lo >> 1) & 0xFFFF;
|
|
fc = ((hi & 1) << 15) | (lo >> 17);
|
|
}
|
|
if (bitlen == 35){
|
|
cardnum = (lo >> 1) & 0xFFFFF;
|
|
fc = ((hi & 1) << 11)|(lo >> 21);
|
|
}
|
|
}
|
|
else { //if bit 38 is not set then 37 bit format is used
|
|
bitlen= 37;
|
|
fc = 0;
|
|
cardnum = 0;
|
|
if (bitlen == 37){
|
|
cardnum = (lo >> 1) & 0x7FFFF;
|
|
fc = ((hi & 0xF) << 12) | (lo >> 20);
|
|
}
|
|
}
|
|
Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
|
|
hi,
|
|
lo,
|
|
(lo >> 1) & 0xFFFF,
|
|
bitlen,
|
|
fc,
|
|
cardnum
|
|
);
|
|
}
|
|
if (findone){
|
|
*high = hi;
|
|
*low = lo;
|
|
break;
|
|
}
|
|
// reset
|
|
}
|
|
hi2 = hi = lo = idx = 0;
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Stopped");
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
|
|
void CmdAWIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
|
|
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
|
|
//big enough to catch 2 sequences of largest format
|
|
size_t size = 12800; //50 * 128 * 2;
|
|
|
|
int idx = 0, dummyIdx = 0;
|
|
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
|
|
WDT_HIT();
|
|
if (ledcontrol) LED_A_ON();
|
|
|
|
DoAcquisition_default(-1, true);
|
|
// FSK demodulator
|
|
|
|
idx = detectAWID(dest, &size, &dummyIdx);
|
|
|
|
if (idx <= 0 || size != 96) continue;
|
|
// Index map
|
|
// 0 10 20 30 40 50 60
|
|
// | | | | | | |
|
|
// 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
|
|
// -----------------------------------------------------------------------------
|
|
// 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
|
|
// premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
|
|
// |---26 bit---| |-----117----||-------------142-------------|
|
|
// b = format bit len, o = odd parity of last 3 bits
|
|
// f = facility code, c = card number
|
|
// w = wiegand parity
|
|
// (26 bit format shown)
|
|
|
|
//get raw ID before removing parities
|
|
uint32_t rawLo = bytebits_to_byte(dest+idx+64, 32);
|
|
uint32_t rawHi = bytebits_to_byte(dest+idx+32, 32);
|
|
uint32_t rawHi2 = bytebits_to_byte(dest+idx, 32);
|
|
|
|
size = removeParity(dest, idx+8, 4, 1, 88);
|
|
if (size != 66) continue;
|
|
// ok valid card found!
|
|
|
|
// Index map
|
|
// 0 10 20 30 40 50 60
|
|
// | | | | | | |
|
|
// 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
|
|
// -----------------------------------------------------------------------------
|
|
// 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
|
|
// bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|
// |26 bit| |-117--| |-----142------|
|
|
// b = format bit len, o = odd parity of last 3 bits
|
|
// f = facility code, c = card number
|
|
// w = wiegand parity
|
|
// (26 bit format shown)
|
|
|
|
uint32_t fc = 0;
|
|
uint32_t cardnum = 0;
|
|
uint32_t code1 = 0;
|
|
uint32_t code2 = 0;
|
|
uint8_t fmtLen = bytebits_to_byte(dest, 8);
|
|
if (fmtLen == 26){
|
|
fc = bytebits_to_byte(dest+9, 8);
|
|
cardnum = bytebits_to_byte(dest+17, 16);
|
|
code1 = bytebits_to_byte(dest+8, fmtLen);
|
|
Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
|
|
} else {
|
|
cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
|
|
if (fmtLen > 32){
|
|
code1 = bytebits_to_byte(dest+8, fmtLen-32);
|
|
code2 = bytebits_to_byte(dest+8+(fmtLen-32), 32);
|
|
Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
|
|
} else{
|
|
code1 = bytebits_to_byte(dest+8, fmtLen);
|
|
Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
|
|
}
|
|
}
|
|
if (findone){
|
|
if (ledcontrol) LED_A_OFF();
|
|
*high = rawHi;
|
|
*low = rawLo;
|
|
break;
|
|
}
|
|
// reset
|
|
idx = 0;
|
|
WDT_HIT();
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Stopped");
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
void CmdEM410xdemod(int findone, uint32_t *high, uint64_t *low, int ledcontrol) {
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
|
|
size_t size = 0, idx = 0;
|
|
int clk = 0, invert = 0, errCnt = 0, maxErr = 20;
|
|
uint32_t hi = 0;
|
|
uint64_t lo = 0;
|
|
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
|
|
WDT_HIT();
|
|
if (ledcontrol) LED_A_ON();
|
|
|
|
DoAcquisition_default(-1, true);
|
|
|
|
size = BigBuf_max_traceLen();
|
|
//askdemod and manchester decode
|
|
if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
|
|
errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
|
|
WDT_HIT();
|
|
|
|
if (errCnt < 0) continue;
|
|
|
|
errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
|
|
if (errCnt == 1){
|
|
if (size == 128){
|
|
Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
|
|
hi,
|
|
(uint32_t)(lo >> 32),
|
|
(uint32_t)lo,
|
|
(uint32_t)(lo & 0xFFFF),
|
|
(uint32_t)((lo >> 16LL) & 0xFF),
|
|
(uint32_t)(lo & 0xFFFFFF));
|
|
} else {
|
|
Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
|
|
(uint32_t)(lo >> 32),
|
|
(uint32_t)lo,
|
|
(uint32_t)(lo & 0xFFFF),
|
|
(uint32_t)((lo >> 16LL) & 0xFF),
|
|
(uint32_t)(lo & 0xFFFFFF));
|
|
}
|
|
|
|
if (findone){
|
|
if (ledcontrol) LED_A_OFF();
|
|
*high = hi;
|
|
*low = lo;
|
|
break;
|
|
}
|
|
}
|
|
WDT_HIT();
|
|
hi = lo = size = idx = 0;
|
|
clk = invert = errCnt = 0;
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Stopped");
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
void CmdIOdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
|
|
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
|
|
int dummyIdx = 0, idx = 0;
|
|
uint32_t code = 0, code2 = 0;
|
|
uint8_t version = 0, facilitycode = 0, crc = 0;
|
|
uint16_t number = 0, calccrc = 0;
|
|
|
|
size_t size = BigBuf_max_traceLen();
|
|
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
// Configure to go in 125Khz listen mode
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
WDT_HIT();
|
|
if (ledcontrol) LED_A_ON();
|
|
|
|
DoAcquisition_default(-1, true);
|
|
|
|
//fskdemod and get start index
|
|
WDT_HIT();
|
|
idx = detectIOProx(dest, &size, &dummyIdx);
|
|
if (idx < 0) continue;
|
|
//valid tag found
|
|
|
|
//Index map
|
|
//0 10 20 30 40 50 60
|
|
//| | | | | | |
|
|
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
|
|
//-----------------------------------------------------------------------------
|
|
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
|
|
//
|
|
//Checksum:
|
|
//00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
|
|
//preamble F0 E0 01 03 B6 75
|
|
// How to calc checksum,
|
|
// http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
|
|
// F0 + E0 + 01 + 03 + B6 = 28A
|
|
// 28A & FF = 8A
|
|
// FF - 8A = 75
|
|
// Checksum: 0x75
|
|
//XSF(version)facility:codeone+codetwo
|
|
//Handle the data
|
|
// if(findone){ //only print binary if we are doing one
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
|
|
// Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
|
|
// }
|
|
code = bytebits_to_byte(dest+idx, 32);
|
|
code2 = bytebits_to_byte(dest+idx+32, 32);
|
|
version = bytebits_to_byte(dest+idx+27, 8); //14,4
|
|
facilitycode = bytebits_to_byte(dest+idx+18, 8);
|
|
number = (bytebits_to_byte(dest+idx+36, 8) << 8) | (bytebits_to_byte(dest+idx+45, 8)); //36,9
|
|
|
|
crc = bytebits_to_byte(dest+idx+54, 8);
|
|
for (uint8_t i=1; i<6; ++i)
|
|
calccrc += bytebits_to_byte(dest+idx+9*i, 8);
|
|
calccrc &= 0xff;
|
|
calccrc = 0xff - calccrc;
|
|
|
|
char *crcStr = (crc == calccrc) ? "ok" : "!crc";
|
|
|
|
Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]", version, facilitycode, number, code, code2, crc, crcStr);
|
|
// if we're only looking for one tag
|
|
if (findone){
|
|
if (ledcontrol) LED_A_OFF();
|
|
*high = code;
|
|
*low = code2;
|
|
break;
|
|
}
|
|
code = code2 = 0;
|
|
version = facilitycode = 0;
|
|
number = 0;
|
|
idx = 0;
|
|
|
|
WDT_HIT();
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Stopped");
|
|
if (ledcontrol) LED_A_OFF();
|
|
}
|
|
|
|
/*------------------------------
|
|
* T5555/T5557/T5567/T5577 routines
|
|
*------------------------------
|
|
* NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
|
|
*
|
|
* Relevant communication times in microsecond
|
|
* To compensate antenna falling times shorten the write times
|
|
* and enlarge the gap ones.
|
|
* Q5 tags seems to have issues when these values changes.
|
|
*/
|
|
|
|
void TurnReadLFOn(uint32_t delay) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
|
|
// measure antenna strength.
|
|
//int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
|
|
WaitUS(delay);
|
|
}
|
|
void TurnReadLF_off(uint32_t delay) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(delay);
|
|
}
|
|
|
|
// Write one bit to card
|
|
void T55xxWriteBit(int bit) {
|
|
if (!bit)
|
|
TurnReadLFOn(t_config.write_0);
|
|
else
|
|
TurnReadLFOn(t_config.write_1);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(t_config.write_gap);
|
|
}
|
|
|
|
// Send T5577 reset command then read stream (see if we can identify the start of the stream)
|
|
void T55xxResetRead(void) {
|
|
LED_A_ON();
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
StartTicks();
|
|
|
|
// Set up FPGA, 125kHz
|
|
LFSetupFPGAForADC(95, true);
|
|
// make sure tag is fully powered up...
|
|
WaitMS(4);
|
|
|
|
// Trigger T55x7 in mode.
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(t_config.start_gap);
|
|
|
|
// reset tag - op code 00
|
|
T55xxWriteBit(0);
|
|
T55xxWriteBit(0);
|
|
|
|
TurnReadLFOn(t_config.read_gap);
|
|
|
|
// Acquisition
|
|
DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
|
|
|
|
// Turn the field off
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
// Write one card block in page 0, no lock
|
|
void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
|
|
LED_A_ON();
|
|
bool PwdMode = arg & 0x1;
|
|
uint8_t Page = (arg & 0x2)>>1;
|
|
bool testMode = arg & 0x4;
|
|
uint32_t i = 0;
|
|
|
|
StartTicks();
|
|
|
|
// Set up FPGA, 125kHz
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
// make sure tag is fully powered up...
|
|
WaitMS(4);
|
|
// Trigger T55x7 in mode.
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(t_config.start_gap);
|
|
|
|
if (testMode) Dbprintf("TestMODE");
|
|
// Std Opcode 10
|
|
T55xxWriteBit(testMode ? 0 : 1);
|
|
T55xxWriteBit(testMode ? 1 : Page); //Page 0
|
|
|
|
if (PwdMode){
|
|
// Send Pwd
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Pwd & i);
|
|
}
|
|
// Send Lock bit
|
|
T55xxWriteBit(0);
|
|
|
|
// Send Data
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Data & i);
|
|
|
|
// Send Block number
|
|
for (i = 0x04; i != 0; i >>= 1)
|
|
T55xxWriteBit(Block & i);
|
|
|
|
// Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
|
|
// so wait a little more)
|
|
|
|
// "there is a clock delay before programming"
|
|
// - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
|
|
// so we should wait 1 clock + 5.6ms then read response?
|
|
// but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
|
|
if (testMode) {
|
|
//TESTMODE TIMING TESTS:
|
|
// <566us does nothing
|
|
// 566-568 switches between wiping to 0s and doing nothing
|
|
// 5184 wipes and allows 1 block to be programmed.
|
|
// indefinite power on wipes and then programs all blocks with bitshifted data sent.
|
|
TurnReadLFOn(5184);
|
|
|
|
} else {
|
|
TurnReadLFOn(20 * 1000);
|
|
|
|
//could attempt to do a read to confirm write took
|
|
// as the tag should repeat back the new block
|
|
// until it is reset, but to confirm it we would
|
|
// need to know the current block 0 config mode for
|
|
// modulation clock an other details to demod the response...
|
|
// response should be (for t55x7) a 0 bit then (ST if on)
|
|
// block data written in on repeat until reset.
|
|
|
|
//DoPartialAcquisition(20, true, 12000);
|
|
}
|
|
|
|
// turn field off
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
// Write one card block in page 0, no lock
|
|
void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
|
|
T55xxWriteBlockExt(Data, Block, Pwd, arg);
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
}
|
|
|
|
// Read one card block in page [page]
|
|
void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
|
|
LED_A_ON();
|
|
bool PwdMode = arg0 & 0x1;
|
|
uint8_t Page = ( arg0 & 0x2 ) >> 1;
|
|
bool brute_mem = arg0 & 0x4;
|
|
|
|
uint32_t i = 0;
|
|
|
|
// regular read mode
|
|
bool RegReadMode = (Block == 0xFF);
|
|
|
|
uint8_t start_wait = 4;
|
|
size_t samples = 12000;
|
|
if ( brute_mem ) {
|
|
start_wait = 0;
|
|
samples = 1024;
|
|
}
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_keep_EM();
|
|
|
|
//make sure block is at max 7
|
|
Block &= 0x7;
|
|
|
|
StartTicks();
|
|
|
|
// Set up FPGA, 125kHz to power up the tag
|
|
LFSetupFPGAForADC(95, true);
|
|
// make sure tag is fully powered up...
|
|
WaitMS(start_wait);
|
|
|
|
// Trigger T55x7 Direct Access Mode with start gap
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(t_config.start_gap);
|
|
|
|
// Opcode 1[page]
|
|
T55xxWriteBit(1);
|
|
T55xxWriteBit(Page); //Page 0
|
|
|
|
if (PwdMode){
|
|
// Send Pwd
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Pwd & i);
|
|
}
|
|
// Send a zero bit separation
|
|
T55xxWriteBit(0);
|
|
|
|
// Send Block number (if direct access mode)
|
|
if (!RegReadMode)
|
|
for (i = 0x04; i != 0; i >>= 1)
|
|
T55xxWriteBit(Block & i);
|
|
|
|
// Turn field on to read the response
|
|
// 137*8 seems to get to the start of data pretty well...
|
|
// but we want to go past the start and let the repeating data settle in...
|
|
TurnReadLFOn(210*8);
|
|
|
|
// Acquisition
|
|
// Now do the acquisition
|
|
DoPartialAcquisition(0, true, samples, 0);
|
|
|
|
// Turn the field off
|
|
if ( !brute_mem ) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LED_A_OFF();
|
|
}
|
|
}
|
|
|
|
void T55xx_ChkPwds() {
|
|
|
|
DbpString("[+] T55XX Check pwds using flashmemory starting");
|
|
|
|
uint8_t ret = 0;
|
|
// First get baseline and setup LF mode.
|
|
// tends to mess up BigBuf
|
|
uint8_t *buf = BigBuf_get_addr();
|
|
|
|
uint32_t b1, baseline = 0;
|
|
|
|
// collect baseline for failed attempt
|
|
uint8_t x = 32;
|
|
while (x--) {
|
|
b1 = 0;
|
|
T55xxReadBlock(4, 1, 0);
|
|
for (uint16_t j=0; j < 1024; ++j)
|
|
b1 += buf[j];
|
|
|
|
b1 *= b1;
|
|
b1 >>= 8;
|
|
baseline += b1;
|
|
}
|
|
|
|
baseline >>= 5;
|
|
Dbprintf("[=] Baseline determined [%u]", baseline);
|
|
|
|
|
|
uint8_t *pwds = BigBuf_get_EM_addr();
|
|
bool use_flashmem = true;
|
|
uint16_t pwdCount = 0;
|
|
uint32_t candidate = 0;
|
|
|
|
#ifdef WITH_FLASH
|
|
if ( use_flashmem ) {
|
|
BigBuf_Clear_EM();
|
|
uint16_t isok = 0;
|
|
uint8_t counter[2] = {0x00, 0x00};
|
|
isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET, counter, sizeof(counter) );
|
|
if ( isok != sizeof(counter) )
|
|
goto OUT;
|
|
|
|
pwdCount = counter[1] << 8 | counter[0];
|
|
|
|
if ( pwdCount == 0 && pwdCount == 0xFFFF)
|
|
goto OUT;
|
|
|
|
isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET+2, pwds, pwdCount * 4);
|
|
if ( isok != pwdCount * 4 )
|
|
goto OUT;
|
|
|
|
Dbprintf("[=] Password dictionary count %d ", pwdCount);
|
|
}
|
|
#endif
|
|
|
|
uint32_t pwd = 0, curr = 0, prev = 0;
|
|
for (uint16_t i =0; i< pwdCount; ++i) {
|
|
|
|
if (BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
goto OUT;
|
|
}
|
|
|
|
pwd = bytes_to_num(pwds + i * 4, 4);
|
|
|
|
|
|
T55xxReadBlock(5, 0, pwd);
|
|
|
|
// calc mean of BigBuf 1024 samples.
|
|
uint32_t sum = 0;
|
|
for (uint16_t j=0; j<1024; ++j) {
|
|
sum += buf[j];
|
|
}
|
|
|
|
sum *= sum;
|
|
sum >>= 8;
|
|
|
|
int32_t tmp = (sum - baseline);
|
|
curr = ABS(tmp);
|
|
|
|
Dbprintf("[=] Pwd %08X | ABS %u", pwd, curr );
|
|
|
|
if ( curr > prev ) {
|
|
|
|
|
|
Dbprintf("[=] --> ABS %u Candidate %08X <--", curr, pwd );
|
|
candidate = pwd;
|
|
prev = curr;
|
|
}
|
|
}
|
|
|
|
if ( candidate )
|
|
ret = 1;
|
|
|
|
OUT:
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
cmd_send(CMD_ACK,ret,candidate,0,0,0);
|
|
LEDsoff();
|
|
}
|
|
|
|
void T55xxWakeUp(uint32_t Pwd){
|
|
LED_B_ON();
|
|
uint32_t i = 0;
|
|
|
|
StartTicks();
|
|
|
|
// Set up FPGA, 125kHz
|
|
LFSetupFPGAForADC(95, true);
|
|
// make sure tag is fully powered up...
|
|
WaitMS(4);
|
|
|
|
// Trigger T55x7 Direct Access Mode
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
WaitUS(t_config.start_gap);
|
|
|
|
// Opcode 10
|
|
T55xxWriteBit(1);
|
|
T55xxWriteBit(0); //Page 0
|
|
|
|
// Send Pwd
|
|
for (i = 0x80000000; i != 0; i >>= 1)
|
|
T55xxWriteBit(Pwd & i);
|
|
|
|
// Turn and leave field on to let the begin repeating transmission
|
|
TurnReadLFOn(20*1000);
|
|
}
|
|
|
|
/*-------------- Cloning routines -----------*/
|
|
void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
|
|
// write last block first and config block last (if included)
|
|
for (uint8_t i = numblocks+startblock; i > startblock; i--)
|
|
T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
|
|
}
|
|
|
|
// Copy HID id to card and setup block 0 config
|
|
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
|
|
uint32_t data[] = {0,0,0,0,0,0,0};
|
|
uint8_t last_block = 0;
|
|
|
|
if (longFMT){
|
|
// Ensure no more than 84 bits supplied
|
|
if (hi2 > 0xFFFFF) {
|
|
DbpString("Tags can only have 84 bits.");
|
|
return;
|
|
}
|
|
// Build the 6 data blocks for supplied 84bit ID
|
|
last_block = 6;
|
|
// load preamble (1D) & long format identifier (9E manchester encoded)
|
|
data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
|
|
// load raw id from hi2, hi, lo to data blocks (manchester encoded)
|
|
data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
|
|
data[3] = manchesterEncode2Bytes(hi >> 16);
|
|
data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
|
|
data[5] = manchesterEncode2Bytes(lo >> 16);
|
|
data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
|
|
} else {
|
|
// Ensure no more than 44 bits supplied
|
|
if (hi > 0xFFF) {
|
|
DbpString("Tags can only have 44 bits.");
|
|
return;
|
|
}
|
|
// Build the 3 data blocks for supplied 44bit ID
|
|
last_block = 3;
|
|
// load preamble
|
|
data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
|
|
data[2] = manchesterEncode2Bytes(lo >> 16);
|
|
data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
|
|
}
|
|
// load chip config block
|
|
data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
|
|
|
|
//TODO add selection of chip for Q5 or T55x7
|
|
// data[0] = T5555_SET_BITRATE(50) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
|
|
|
|
LED_D_ON();
|
|
WriteT55xx(data, 0, last_block+1);
|
|
LED_D_OFF();
|
|
}
|
|
|
|
void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
|
|
uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
|
|
//TODO add selection of chip for Q5 or T55x7
|
|
// data[0] = T5555_SET_BITRATE(64) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
|
|
|
|
LED_D_ON();
|
|
// Program the data blocks for supplied ID
|
|
// and the block 0 config
|
|
WriteT55xx(data, 0, 3);
|
|
LED_D_OFF();
|
|
}
|
|
|
|
// Clone Indala 64-bit tag by UID to T55x7
|
|
void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
|
|
//Program the 2 data blocks for supplied 64bit UID
|
|
// and the Config for Indala 64 format (RF/32;PSK2 with RF/2;Maxblock=2)
|
|
uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
|
|
//TODO add selection of chip for Q5 or T55x7
|
|
// data[0] = T5555_SET_BITRATE(32 | T5555_MODULATION_PSK2 | 2 << T5555_MAXBLOCK_SHIFT;
|
|
|
|
WriteT55xx(data, 0, 3);
|
|
//Alternative config for Indala (Extended mode;RF/32;PSK2 with RF/2;Maxblock=2;Inverse data)
|
|
// T5567WriteBlock(0x603E1042,0);
|
|
}
|
|
// Clone Indala 224-bit tag by UID to T55x7
|
|
void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
|
|
//Program the 7 data blocks for supplied 224bit UID
|
|
uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
|
|
// and the block 0 for Indala224 format
|
|
//Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
|
|
data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
|
|
//TODO add selection of chip for Q5 or T55x7
|
|
// data[0] = T5555_SET_BITRATE(32 | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
|
|
WriteT55xx(data, 0, 8);
|
|
//Alternative config for Indala (Extended mode;RF/32;PSK2 with RF/2;Maxblock=7;Inverse data)
|
|
// T5567WriteBlock(0x603E10E2,0);
|
|
}
|
|
// clone viking tag to T55xx
|
|
void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
|
|
uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
|
|
if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
|
|
// Program the data blocks for supplied ID and the block 0 config
|
|
WriteT55xx(data, 0, 3);
|
|
LED_D_OFF();
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
}
|
|
|
|
// Define 9bit header for EM410x tags
|
|
#define EM410X_HEADER 0x1FF
|
|
#define EM410X_ID_LENGTH 40
|
|
|
|
void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
|
|
int i, id_bit;
|
|
uint64_t id = EM410X_HEADER;
|
|
uint64_t rev_id = 0; // reversed ID
|
|
int c_parity[4]; // column parity
|
|
int r_parity = 0; // row parity
|
|
uint32_t clock = 0;
|
|
|
|
// Reverse ID bits given as parameter (for simpler operations)
|
|
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
|
|
if (i < 32) {
|
|
rev_id = (rev_id << 1) | (id_lo & 1);
|
|
id_lo >>= 1;
|
|
} else {
|
|
rev_id = (rev_id << 1) | (id_hi & 1);
|
|
id_hi >>= 1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
|
|
id_bit = rev_id & 1;
|
|
|
|
if (i % 4 == 0) {
|
|
// Don't write row parity bit at start of parsing
|
|
if (i)
|
|
id = (id << 1) | r_parity;
|
|
// Start counting parity for new row
|
|
r_parity = id_bit;
|
|
} else {
|
|
// Count row parity
|
|
r_parity ^= id_bit;
|
|
}
|
|
|
|
// First elements in column?
|
|
if (i < 4)
|
|
// Fill out first elements
|
|
c_parity[i] = id_bit;
|
|
else
|
|
// Count column parity
|
|
c_parity[i % 4] ^= id_bit;
|
|
|
|
// Insert ID bit
|
|
id = (id << 1) | id_bit;
|
|
rev_id >>= 1;
|
|
}
|
|
|
|
// Insert parity bit of last row
|
|
id = (id << 1) | r_parity;
|
|
|
|
// Fill out column parity at the end of tag
|
|
for (i = 0; i < 4; ++i)
|
|
id = (id << 1) | c_parity[i];
|
|
|
|
// Add stop bit
|
|
id <<= 1;
|
|
|
|
Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
|
|
LED_D_ON();
|
|
|
|
// Write EM410x ID
|
|
uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
|
|
|
|
clock = (card & 0xFF00) >> 8;
|
|
clock = (clock == 0) ? 64 : clock;
|
|
Dbprintf("Clock rate: %d", clock);
|
|
if (card & 0xFF) { //t55x7
|
|
clock = GetT55xxClockBit(clock);
|
|
if (clock == 0) {
|
|
Dbprintf("Invalid clock rate: %d", clock);
|
|
return;
|
|
}
|
|
data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
|
|
} else { //t5555 (Q5)
|
|
data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
|
|
}
|
|
|
|
WriteT55xx(data, 0, 3);
|
|
|
|
LED_D_OFF();
|
|
Dbprintf("Tag %s written with 0x%08x%08x\n",
|
|
card ? "T55x7":"T5555",
|
|
(uint32_t)(id >> 32),
|
|
(uint32_t)id);
|
|
}
|
|
|
|
//-----------------------------------
|
|
// EM4469 / EM4305 routines
|
|
//-----------------------------------
|
|
// Below given command set.
|
|
// Commands are including the even parity, binary mirrored
|
|
#define FWD_CMD_LOGIN 0xC
|
|
#define FWD_CMD_WRITE 0xA
|
|
#define FWD_CMD_READ 0x9
|
|
#define FWD_CMD_DISABLE 0x5
|
|
|
|
uint8_t forwardLink_data[64]; //array of forwarded bits
|
|
uint8_t * forward_ptr; //ptr for forward message preparation
|
|
uint8_t fwd_bit_sz; //forwardlink bit counter
|
|
uint8_t * fwd_write_ptr; //forwardlink bit pointer
|
|
|
|
//====================================================================
|
|
// prepares command bits
|
|
// see EM4469 spec
|
|
//====================================================================
|
|
//--------------------------------------------------------------------
|
|
// VALUES TAKEN FROM EM4x function: SendForward
|
|
// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
|
|
// WRITE_GAP = 128; (16*8)
|
|
// WRITE_1 = 256 32*8; (32*8)
|
|
|
|
// These timings work for 4469/4269/4305 (with the 55*8 above)
|
|
// WRITE_0 = 23*8 , 9*8
|
|
|
|
uint8_t Prepare_Cmd( uint8_t cmd ) {
|
|
|
|
*forward_ptr++ = 0; //start bit
|
|
*forward_ptr++ = 0; //second pause for 4050 code
|
|
|
|
*forward_ptr++ = cmd;
|
|
cmd >>= 1;
|
|
*forward_ptr++ = cmd;
|
|
cmd >>= 1;
|
|
*forward_ptr++ = cmd;
|
|
cmd >>= 1;
|
|
*forward_ptr++ = cmd;
|
|
|
|
return 6; //return number of emited bits
|
|
}
|
|
|
|
//====================================================================
|
|
// prepares address bits
|
|
// see EM4469 spec
|
|
//====================================================================
|
|
uint8_t Prepare_Addr( uint8_t addr ) {
|
|
|
|
register uint8_t line_parity;
|
|
|
|
uint8_t i;
|
|
line_parity = 0;
|
|
for( i=0; i<6; i++ ) {
|
|
*forward_ptr++ = addr;
|
|
line_parity ^= addr;
|
|
addr >>= 1;
|
|
}
|
|
|
|
*forward_ptr++ = (line_parity & 1);
|
|
|
|
return 7; //return number of emited bits
|
|
}
|
|
|
|
//====================================================================
|
|
// prepares data bits intreleaved with parity bits
|
|
// see EM4469 spec
|
|
//====================================================================
|
|
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
|
|
|
|
register uint8_t line_parity;
|
|
register uint8_t column_parity;
|
|
register uint8_t i, j;
|
|
register uint16_t data;
|
|
|
|
data = data_low;
|
|
column_parity = 0;
|
|
|
|
for(i=0; i<4; i++) {
|
|
line_parity = 0;
|
|
for(j=0; j<8; j++) {
|
|
line_parity ^= data;
|
|
column_parity ^= (data & 1) << j;
|
|
*forward_ptr++ = data;
|
|
data >>= 1;
|
|
}
|
|
*forward_ptr++ = line_parity;
|
|
if(i == 1)
|
|
data = data_hi;
|
|
}
|
|
|
|
for(j=0; j<8; j++) {
|
|
*forward_ptr++ = column_parity;
|
|
column_parity >>= 1;
|
|
}
|
|
*forward_ptr = 0;
|
|
|
|
return 45; //return number of emited bits
|
|
}
|
|
|
|
//====================================================================
|
|
// Forward Link send function
|
|
// Requires: forwarLink_data filled with valid bits (1 bit per byte)
|
|
// fwd_bit_count set with number of bits to be sent
|
|
//====================================================================
|
|
void SendForward(uint8_t fwd_bit_count) {
|
|
|
|
// iceman, 21.3us increments for the USclock verification.
|
|
// 55FC * 8us == 440us / 21.3 === 20.65 steps. could be too short. Go for 56FC instead
|
|
// 32FC * 8us == 256us / 21.3 == 12.018 steps. ok
|
|
// 16FC * 8us == 128us / 21.3 == 6.009 steps. ok
|
|
#ifndef EM_START_GAP
|
|
#define EM_START_GAP 55*8
|
|
#endif
|
|
|
|
fwd_write_ptr = forwardLink_data;
|
|
fwd_bit_sz = fwd_bit_count;
|
|
|
|
// Set up FPGA, 125kHz or 95 divisor
|
|
LFSetupFPGAForADC(95, true);
|
|
|
|
// force 1st mod pulse (start gap must be longer for 4305)
|
|
fwd_bit_sz--; //prepare next bit modulation
|
|
fwd_write_ptr++;
|
|
|
|
TurnReadLF_off(EM_START_GAP);
|
|
TurnReadLFOn(18*8);
|
|
|
|
// now start writting with bitbanging the antenna.
|
|
while(fwd_bit_sz-- > 0) { //prepare next bit modulation
|
|
if(((*fwd_write_ptr++) & 1) == 1) {
|
|
WaitUS(32*8);
|
|
} else {
|
|
TurnReadLF_off(23*8);
|
|
TurnReadLFOn(18*8);
|
|
}
|
|
}
|
|
}
|
|
|
|
void EM4xLogin(uint32_t pwd) {
|
|
uint8_t len;
|
|
forward_ptr = forwardLink_data;
|
|
len = Prepare_Cmd( FWD_CMD_LOGIN );
|
|
len += Prepare_Data( pwd & 0xFFFF, pwd >> 16 );
|
|
SendForward(len);
|
|
//WaitUS(20); // no wait for login command.
|
|
// should receive
|
|
// 0000 1010 ok.
|
|
// 0000 0001 fail
|
|
}
|
|
|
|
void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd) {
|
|
|
|
LED_A_ON();
|
|
uint8_t len;
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_ext(false);
|
|
|
|
StartTicks();
|
|
/* should we read answer from Logincommand?
|
|
*
|
|
* should receive
|
|
* 0000 1010 ok.
|
|
* 0000 0001 fail
|
|
**/
|
|
if (usepwd) EM4xLogin(pwd);
|
|
|
|
forward_ptr = forwardLink_data;
|
|
len = Prepare_Cmd( FWD_CMD_READ );
|
|
len += Prepare_Addr( addr );
|
|
|
|
SendForward(len);
|
|
|
|
WaitUS(400);
|
|
|
|
DoPartialAcquisition(20, true, 6000, 1000);
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
void EM4xWriteWord(uint32_t flag, uint32_t data, uint32_t pwd) {
|
|
|
|
LED_A_ON();
|
|
|
|
bool usePwd = (flag & 0xF);
|
|
uint8_t addr = (flag >> 8) & 0xFF;
|
|
uint8_t len;
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_ext(false);
|
|
StartTicks();
|
|
/* should we read answer from Logincommand?
|
|
*
|
|
* should receive
|
|
* 0000 1010 ok.
|
|
* 0000 0001 fail
|
|
**/
|
|
if (usePwd) EM4xLogin(pwd);
|
|
|
|
forward_ptr = forwardLink_data;
|
|
len = Prepare_Cmd( FWD_CMD_WRITE );
|
|
len += Prepare_Addr( addr );
|
|
len += Prepare_Data( data & 0xFFFF, data >> 16 );
|
|
|
|
SendForward(len);
|
|
|
|
//Wait 20ms for write to complete?
|
|
WaitMS(7);
|
|
|
|
//Capture response if one exists
|
|
DoPartialAcquisition(20, true, 6000, 1000);
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
/*
|
|
Reading a COTAG.
|
|
|
|
COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
|
|
because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
|
|
|
|
READER START SEQUENCE:
|
|
burst 800 us, gap 2.2 msecs
|
|
burst 3.6 msecs gap 2.2 msecs
|
|
burst 800 us gap 2.2 msecs
|
|
pulse 3.6 msecs
|
|
|
|
This triggers a COTAG tag to response
|
|
*/
|
|
void Cotag(uint32_t arg0) {
|
|
#ifndef OFF
|
|
# define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
|
|
#endif
|
|
#ifndef ON
|
|
# define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
|
|
#endif
|
|
uint8_t rawsignal = arg0 & 0xF;
|
|
|
|
LED_A_ON();
|
|
|
|
// Switching to LF image on FPGA. This might empty BigBuff
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
|
|
//clear buffer now so it does not interfere with timing later
|
|
BigBuf_Clear_ext(false);
|
|
|
|
// Set up FPGA, 132kHz to power up the tag
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
|
|
// start clock - 1.5ticks is 1us
|
|
StartTicks();
|
|
|
|
//send COTAG start pulse
|
|
ON(740) OFF
|
|
ON(3330) OFF
|
|
ON(740) OFF
|
|
ON(1000)
|
|
|
|
switch(rawsignal) {
|
|
case 0: doCotagAcquisition(50000); break;
|
|
case 1: doCotagAcquisitionManchester(); break;
|
|
case 2: DoAcquisition_config(true, 0); break;
|
|
}
|
|
|
|
// Turn the field off
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
LEDsoff();
|
|
}
|
|
|
|
/*
|
|
* EM4305 support
|
|
*/
|