Files
proxmark3/armsrc/iso14443a.c
iceman1001 e98572a1e2 I just merged @marshmellow's branch "iclass" and that was a lot of new functionality. *great work*
Things like the ICLASS, tryDecryptWord,

--
My other stuff like default keys, some new Mifare EV1 commands 0x40, 0x43 for the logging annotation,  start of the T55x7 configblock helper functionality (ripped from Adam Lauries RFIdler code)
Changes to the PCF7931 functions written,  which has a lousy input check..
2015-10-07 23:00:46 +02:00

3142 lines
105 KiB
C

//-----------------------------------------------------------------------------
// Merlok - June 2011, 2012
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "cmd.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1.h"
#include "mifareutil.h"
#include "BigBuf.h"
static uint32_t iso14a_timeout;
int rsamples = 0;
uint8_t trigger = 0;
// the block number for the ISO14443-4 PCB
static uint8_t iso14_pcb_blocknum = 0;
//
// ISO14443 timing:
//
// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
#define REQUEST_GUARD_TIME (7000/16 + 1)
// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
// bool LastCommandWasRequest = FALSE;
//
// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
//
// When the PM acts as reader and is receiving tag data, it takes
// 3 ticks delay in the AD converter
// 16 ticks until the modulation detector completes and sets curbit
// 8 ticks until bit_to_arm is assigned from curbit
// 8*16 ticks for the transfer from FPGA to ARM
// 4*16 ticks until we measure the time
// - 8*16 ticks because we measure the time of the previous transfer
#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
// When the PM acts as a reader and is sending, it takes
// 4*16 ticks until we can write data to the sending hold register
// 8*16 ticks until the SHR is transferred to the Sending Shift Register
// 8 ticks until the first transfer starts
// 8 ticks later the FPGA samples the data
// 1 tick to assign mod_sig_coil
#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
// When the PM acts as tag and is receiving it takes
// 2 ticks delay in the RF part (for the first falling edge),
// 3 ticks for the A/D conversion,
// 8 ticks on average until the start of the SSC transfer,
// 8 ticks until the SSC samples the first data
// 7*16 ticks to complete the transfer from FPGA to ARM
// 8 ticks until the next ssp_clk rising edge
// 4*16 ticks until we measure the time
// - 8*16 ticks because we measure the time of the previous transfer
#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
// The FPGA will report its internal sending delay in
uint16_t FpgaSendQueueDelay;
// the 5 first bits are the number of bits buffered in mod_sig_buf
// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
// When the PM acts as tag and is sending, it takes
// 4*16 ticks until we can write data to the sending hold register
// 8*16 ticks until the SHR is transferred to the Sending Shift Register
// 8 ticks until the first transfer starts
// 8 ticks later the FPGA samples the data
// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
// + 1 tick to assign mod_sig_coil
#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
// When the PM acts as sniffer and is receiving tag data, it takes
// 3 ticks A/D conversion
// 14 ticks to complete the modulation detection
// 8 ticks (on average) until the result is stored in to_arm
// + the delays in transferring data - which is the same for
// sniffing reader and tag data and therefore not relevant
#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
// When the PM acts as sniffer and is receiving reader data, it takes
// 2 ticks delay in analogue RF receiver (for the falling edge of the
// start bit, which marks the start of the communication)
// 3 ticks A/D conversion
// 8 ticks on average until the data is stored in to_arm.
// + the delays in transferring data - which is the same for
// sniffing reader and tag data and therefore not relevant
#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
//variables used for timing purposes:
//these are in ssp_clk cycles:
static uint32_t NextTransferTime;
static uint32_t LastTimeProxToAirStart;
static uint32_t LastProxToAirDuration;
// CARD TO READER - manchester
// Sequence D: 11110000 modulation with subcarrier during first half
// Sequence E: 00001111 modulation with subcarrier during second half
// Sequence F: 00000000 no modulation with subcarrier
// READER TO CARD - miller
// Sequence X: 00001100 drop after half a period
// Sequence Y: 00000000 no drop
// Sequence Z: 11000000 drop at start
#define SEC_D 0xf0
#define SEC_E 0x0f
#define SEC_F 0x00
#define SEC_X 0x0c
#define SEC_Y 0x00
#define SEC_Z 0xc0
const uint8_t OddByteParity[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
};
void iso14a_set_trigger(bool enable) {
trigger = enable;
}
void iso14a_set_timeout(uint32_t timeout) {
iso14a_timeout = timeout;
if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
}
void iso14a_set_ATS_timeout(uint8_t *ats) {
uint8_t tb1;
uint8_t fwi;
uint32_t fwt;
if (ats[0] > 1) { // there is a format byte T0
if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
tb1 = ats[3];
} else {
tb1 = ats[2];
}
fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
iso14a_set_timeout(fwt/(8*16));
}
}
}
//-----------------------------------------------------------------------------
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
byte_t oddparity (const byte_t bt)
{
return OddByteParity[bt];
}
void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
{
uint16_t paritybit_cnt = 0;
uint16_t paritybyte_cnt = 0;
uint8_t parityBits = 0;
for (uint16_t i = 0; i < iLen; i++) {
// Generate the parity bits
parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
if (paritybit_cnt == 7) {
par[paritybyte_cnt] = parityBits; // save 8 Bits parity
parityBits = 0; // and advance to next Parity Byte
paritybyte_cnt++;
paritybit_cnt = 0;
} else {
paritybit_cnt++;
}
}
// save remaining parity bits
par[paritybyte_cnt] = parityBits;
}
void AppendCrc14443a(uint8_t* data, int len)
{
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
void AppendCrc14443b(uint8_t* data, int len)
{
ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
}
//=============================================================================
// ISO 14443 Type A - Miller decoder
//=============================================================================
// Basics:
// This decoder is used when the PM3 acts as a tag.
// The reader will generate "pauses" by temporarily switching of the field.
// At the PM3 antenna we will therefore measure a modulated antenna voltage.
// The FPGA does a comparison with a threshold and would deliver e.g.:
// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
// The Miller decoder needs to identify the following sequences:
// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
// Note 1: the bitstream may start at any time. We therefore need to sync.
// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
//-----------------------------------------------------------------------------
static tUart Uart;
// Lookup-Table to decide if 4 raw bits are a modulation.
// We accept the following:
// 0001 - a 3 tick wide pause
// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
// 0111 - a 2 tick wide pause shifted left
// 1001 - a 2 tick wide pause shifted right
const bool Mod_Miller_LUT[] = {
FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
};
#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
void UartReset()
{
Uart.state = STATE_UNSYNCD;
Uart.bitCount = 0;
Uart.len = 0; // number of decoded data bytes
Uart.parityLen = 0; // number of decoded parity bytes
Uart.shiftReg = 0; // shiftreg to hold decoded data bits
Uart.parityBits = 0; // holds 8 parity bits
Uart.startTime = 0;
Uart.endTime = 0;
Uart.byteCntMax = 0;
Uart.posCnt = 0;
Uart.syncBit = 9999;
}
void UartInit(uint8_t *data, uint8_t *parity)
{
Uart.output = data;
Uart.parity = parity;
Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
UartReset();
}
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
{
Uart.fourBits = (Uart.fourBits << 8) | bit;
if (Uart.state == STATE_UNSYNCD) { // not yet synced
Uart.syncBit = 9999; // not set
// 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
// 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
// 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
// The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
// Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
// we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
// (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
//
#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
if (Uart.syncBit != 9999) { // found a sync bit
Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
Uart.startTime -= Uart.syncBit;
Uart.endTime = Uart.startTime;
Uart.state = STATE_START_OF_COMMUNICATION;
}
} else {
if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
UartReset();
} else { // Modulation in first half = Sequence Z = logic "0"
if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
UartReset();
} else {
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
Uart.state = STATE_MILLER_Z;
Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
Uart.parityBits <<= 1; // make room for the parity bit
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
if((Uart.len&0x0007) == 0) { // every 8 data bytes
Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
Uart.parityBits = 0;
}
}
}
}
} else {
if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
Uart.state = STATE_MILLER_X;
Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
Uart.parityBits <<= 1; // make room for the new parity bit
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
if ((Uart.len&0x0007) == 0) { // every 8 data bytes
Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
Uart.parityBits = 0;
}
}
} else { // no modulation in both halves - Sequence Y
if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
Uart.state = STATE_UNSYNCD;
Uart.bitCount--; // last "0" was part of EOC sequence
Uart.shiftReg <<= 1; // drop it
if(Uart.bitCount > 0) { // if we decoded some bits
Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
Uart.parityBits <<= 1; // add a (void) parity bit
Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
return TRUE;
} else if (Uart.len & 0x0007) { // there are some parity bits to store
Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
}
if (Uart.len) {
return TRUE; // we are finished with decoding the raw data sequence
} else {
UartReset(); // Nothing received - start over
}
}
if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
UartReset();
} else { // a logic "0"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
Uart.state = STATE_MILLER_Y;
if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
Uart.parityBits <<= 1; // make room for the parity bit
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
if ((Uart.len&0x0007) == 0) { // every 8 data bytes
Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
Uart.parityBits = 0;
}
}
}
}
}
}
return FALSE; // not finished yet, need more data
}
//=============================================================================
// ISO 14443 Type A - Manchester decoder
//=============================================================================
// Basics:
// This decoder is used when the PM3 acts as a reader.
// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
// The Manchester decoder needs to identify the following sequences:
// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
// 8 ticks unmodulated: Sequence F = end of communication
// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
// Note 1: the bitstream may start at any time. We therefore need to sync.
// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
static tDemod Demod;
// Lookup-Table to decide if 4 raw bits are a modulation.
// We accept three or four "1" in any position
const bool Mod_Manchester_LUT[] = {
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
};
#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
void DemodReset()
{
Demod.state = DEMOD_UNSYNCD;
Demod.len = 0; // number of decoded data bytes
Demod.parityLen = 0;
Demod.shiftReg = 0; // shiftreg to hold decoded data bits
Demod.parityBits = 0; //
Demod.collisionPos = 0; // Position of collision bit
Demod.twoBits = 0xffff; // buffer for 2 Bits
Demod.highCnt = 0;
Demod.startTime = 0;
Demod.endTime = 0;
//
Demod.bitCount = 0;
Demod.syncBit = 0xFFFF;
Demod.samples = 0;
}
void DemodInit(uint8_t *data, uint8_t *parity)
{
Demod.output = data;
Demod.parity = parity;
DemodReset();
}
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
{
Demod.twoBits = (Demod.twoBits << 8) | bit;
if (Demod.state == DEMOD_UNSYNCD) {
if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
if (Demod.twoBits == 0x0000) {
Demod.highCnt++;
} else {
Demod.highCnt = 0;
}
} else {
Demod.syncBit = 0xFFFF; // not set
if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
if (Demod.syncBit != 0xFFFF) {
Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
Demod.startTime -= Demod.syncBit;
Demod.bitCount = offset; // number of decoded data bits
Demod.state = DEMOD_MANCHESTER_DATA;
}
}
} else {
if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
if (!Demod.collisionPos) {
Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
}
} // modulation in first half only - Sequence D = 1
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
Demod.parityBits <<= 1; // make room for the parity bit
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
if((Demod.len&0x0007) == 0) { // every 8 data bytes
Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
Demod.parityBits = 0;
}
}
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
} else { // no modulation in first half
if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
Demod.parityBits <<= 1; // make room for the new parity bit
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
if ((Demod.len&0x0007) == 0) { // every 8 data bytes
Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
Demod.parityBits = 0;
}
}
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
} else { // no modulation in both halves - End of communication
if(Demod.bitCount > 0) { // there are some remaining data bits
Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
Demod.parityBits <<= 1; // add a (void) parity bit
Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
return TRUE;
} else if (Demod.len & 0x0007) { // there are some parity bits to store
Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
}
if (Demod.len) {
return TRUE; // we are finished with decoding the raw data sequence
} else { // nothing received. Start over
DemodReset();
}
}
}
}
return FALSE; // not finished yet, need more data
}
//=============================================================================
// Finally, a `sniffer' for ISO 14443 Type A
// Both sides of communication!
//=============================================================================
//-----------------------------------------------------------------------------
// Record the sequence of commands sent by the reader to the tag, with
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
void RAMFUNC SniffIso14443a(uint8_t param) {
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
BigBuf_free();
// init trace buffer
clear_trace();
set_tracing(TRUE);
// The command (reader -> tag) that we're receiving.
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
// The response (tag -> reader) that we're receiving.
uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
// The DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
bool TagIsActive = FALSE;
bool ReaderIsActive = FALSE;
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse, receivedResponsePar);
// Set up the demodulator for the reader -> tag commands
UartInit(receivedCmd, receivedCmdPar);
// Setup and start DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
// triggered == FALSE -- to wait first for card
bool triggered = !(param & 0x03);
// And now we loop, receiving samples.
for(uint32_t rsamples = 0; TRUE; ) {
if(BUTTON_PRESS()) {
DbpString("cancelled by button");
break;
}
LED_A_ON();
WDT_HIT();
int register readBufDataP = data - dmaBuf;
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
if (readBufDataP <= dmaBufDataP){
dataLen = dmaBufDataP - readBufDataP;
} else {
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
}
// test for length of buffer
if(dataLen > maxDataLen) {
maxDataLen = dataLen;
if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("blew circular buffer! dataLen=%d", dataLen);
break;
}
}
if(dataLen < 1) continue;
// primary buffer was stopped( <-- we lost data!
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
}
// secondary buffer sets as primary, secondary buffer was stopped
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
LED_A_OFF();
if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if (MillerDecoding(readerdata, (rsamples-1)*4)) {
LED_C_ON();
// check - if there is a short 7bit request from reader
if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
if(triggered) {
if (!LogTrace(receivedCmd,
Uart.len,
Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
Uart.parity,
TRUE)) break;
}
/* And ready to receive another command. */
UartReset();
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
DemodReset();
LED_B_OFF();
}
ReaderIsActive = (Uart.state != STATE_UNSYNCD);
}
if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
LED_B_ON();
if (!LogTrace(receivedResponse,
Demod.len,
Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
Demod.parity,
FALSE)) break;
if ((!triggered) && (param & 0x01)) triggered = TRUE;
// And ready to receive another response.
DemodReset();
// And reset the Miller decoder including itS (now outdated) input buffer
UartInit(receivedCmd, receivedCmdPar);
LED_C_OFF();
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
}
}
previous_data = *data;
rsamples++;
data++;
if(data == dmaBuf + DMA_BUFFER_SIZE) {
data = dmaBuf;
}
} // main cycle
FpgaDisableSscDma();
LEDsoff();
Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
}
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
{
ToSendReset();
// Correction bit, might be removed when not needed
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(1); // 1
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
// Send startbit
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
for(uint16_t i = 0; i < len; i++) {
uint8_t b = cmd[i];
// Data bits
for(uint16_t j = 0; j < 8; j++) {
if(b & 1) {
ToSend[++ToSendMax] = SEC_D;
} else {
ToSend[++ToSendMax] = SEC_E;
}
b >>= 1;
}
// Get the parity bit
if (parity[i>>3] & (0x80>>(i&0x0007))) {
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
} else {
ToSend[++ToSendMax] = SEC_E;
LastProxToAirDuration = 8 * ToSendMax;
}
}
// Send stopbit
ToSend[++ToSendMax] = SEC_F;
// Convert from last byte pos to length
ToSendMax++;
}
static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
{
uint8_t par[MAX_PARITY_SIZE];
GetParity(cmd, len, par);
CodeIso14443aAsTagPar(cmd, len, par);
}
static void Code4bitAnswerAsTag(uint8_t cmd)
{
int i;
ToSendReset();
// Correction bit, might be removed when not needed
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(1); // 1
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
// Send startbit
ToSend[++ToSendMax] = SEC_D;
uint8_t b = cmd;
for(i = 0; i < 4; i++) {
if(b & 1) {
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
} else {
ToSend[++ToSendMax] = SEC_E;
LastProxToAirDuration = 8 * ToSendMax;
}
b >>= 1;
}
// Send stopbit
ToSend[++ToSendMax] = SEC_F;
// Convert from last byte pos to length
ToSendMax++;
}
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed
// Or return TRUE when command is captured
//-----------------------------------------------------------------------------
static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
{
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// Now run a `software UART' on the stream of incoming samples.
UartInit(received, parity);
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
for(;;) {
WDT_HIT();
if(BUTTON_PRESS()) return FALSE;
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding(b, 0)) {
*len = Uart.len;
return TRUE;
}
}
}
}
static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
int EmSend4bit(uint8_t resp);
int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
int EmSendCmd(uint8_t *resp, uint16_t respLen);
int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
static uint8_t* free_buffer_pointer;
typedef struct {
uint8_t* response;
size_t response_n;
uint8_t* modulation;
size_t modulation_n;
uint32_t ProxToAirDuration;
} tag_response_info_t;
bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
// Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
// This will need the following byte array for a modulation sequence
// 144 data bits (18 * 8)
// 18 parity bits
// 2 Start and stop
// 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
// 1 just for the case
// ----------- +
// 166 bytes, since every bit that needs to be send costs us a byte
//
// Prepare the tag modulation bits from the message
CodeIso14443aAsTag(response_info->response,response_info->response_n);
// Make sure we do not exceed the free buffer space
if (ToSendMax > max_buffer_size) {
Dbprintf("Out of memory, when modulating bits for tag answer:");
Dbhexdump(response_info->response_n,response_info->response,false);
return false;
}
// Copy the byte array, used for this modulation to the buffer position
memcpy(response_info->modulation,ToSend,ToSendMax);
// Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
response_info->modulation_n = ToSendMax;
response_info->ProxToAirDuration = LastProxToAirDuration;
return true;
}
// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
// -> need 273 bytes buffer
// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
// Retrieve and store the current buffer index
response_info->modulation = free_buffer_pointer;
// Determine the maximum size we can use from our buffer
size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
// Forward the prepare tag modulation function to the inner function
if (prepare_tag_modulation(response_info, max_buffer_size)) {
// Update the free buffer offset
free_buffer_pointer += ToSendMax;
return true;
} else {
return false;
}
}
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
{
//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
// This can be used in a reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0;
uint8_t sak;
// PACK response to PWD AUTH for EV1/NTAG
uint8_t response8[4] = {0,0,0,0};
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
uint8_t response1[2] = {0,0};
switch (tagType) {
case 1: { // MIFARE Classic
// Says: I am Mifare 1k - original line
response1[0] = 0x04;
response1[1] = 0x00;
sak = 0x08;
} break;
case 2: { // MIFARE Ultralight
// Says: I am a stupid memory tag, no crypto
response1[0] = 0x44;
response1[1] = 0x00;
sak = 0x00;
} break;
case 3: { // MIFARE DESFire
// Says: I am a DESFire tag, ph33r me
response1[0] = 0x04;
response1[1] = 0x03;
sak = 0x20;
} break;
case 4: { // ISO/IEC 14443-4
// Says: I am a javacard (JCOP)
response1[0] = 0x04;
response1[1] = 0x00;
sak = 0x28;
} break;
case 5: { // MIFARE TNP3XXX
// Says: I am a toy
response1[0] = 0x01;
response1[1] = 0x0f;
sak = 0x01;
} break;
case 6: { // MIFARE Mini
// Says: I am a Mifare Mini, 320b
response1[0] = 0x44;
response1[1] = 0x00;
sak = 0x09;
} break;
case 7: { // NTAG?
// Says: I am a NTAG,
response1[0] = 0x44;
response1[1] = 0x00;
sak = 0x00;
// PACK
response8[0] = 0x80;
response8[1] = 0x80;
ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
} break;
default: {
Dbprintf("Error: unkown tagtype (%d)",tagType);
return;
} break;
}
// The second response contains the (mandatory) first 24 bits of the UID
uint8_t response2[5] = {0x00};
// Check if the uid uses the (optional) part
uint8_t response2a[5] = {0x00};
if (flags & FLAG_7B_UID_IN_DATA) {
response2[0] = 0x88;
response2[1] = data[0];
response2[2] = data[1];
response2[3] = data[2];
response2a[0] = data[3];
response2a[1] = data[4];
response2a[2] = data[5];
response2a[3] = data[6]; //??
response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
// Configure the ATQA and SAK accordingly
response1[0] |= 0x40;
sak |= 0x04;
} else {
memcpy(response2, data, 4);
//num_to_bytes(uid_1st,4,response2);
// Configure the ATQA and SAK accordingly
response1[0] &= 0xBF;
sak &= 0xFB;
}
// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
// Prepare the mandatory SAK (for 4 and 7 byte UID)
uint8_t response3[3] = {0x00};
response3[0] = sak;
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
uint8_t response3a[3] = {0x00};
response3a[0] = sak & 0xFB;
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
// Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
// TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
// TC(1) = 0x02: CID supported, NAD not supported
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
// Prepare GET_VERSION (different for EV-1 / NTAG)
//uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
// Prepare CHK_TEARING
uint8_t response9[] = {0xBD,0x90,0x3f};
#define TAG_RESPONSE_COUNT 10
tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
{ .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
{ .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
{ .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
{ .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
{ .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
{ .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
{ .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
{ .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
};
// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
// Such a response is less time critical, so we can prepare them on the fly
#define DYNAMIC_RESPONSE_BUFFER_SIZE 64
#define DYNAMIC_MODULATION_BUFFER_SIZE 512
uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
tag_response_info_t dynamic_response_info = {
.response = dynamic_response_buffer,
.response_n = 0,
.modulation = dynamic_modulation_buffer,
.modulation_n = 0
};
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
BigBuf_free_keep_EM();
// allocate buffers:
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
// clear trace
clear_trace();
set_tracing(TRUE);
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
prepare_allocated_tag_modulation(&responses[i]);
}
int len = 0;
// To control where we are in the protocol
int order = 0;
int lastorder;
// Just to allow some checks
int happened = 0;
int happened2 = 0;
int cmdsRecvd = 0;
cmdsRecvd = 0;
tag_response_info_t* p_response;
LED_A_ON();
for(;;) {
// Clean receive command buffer
if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
break;
}
p_response = NULL;
// Okay, look at the command now.
lastorder = order;
if(receivedCmd[0] == 0x26) { // Received a REQUEST
p_response = &responses[0]; order = 1;
} else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
p_response = &responses[0]; order = 6;
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
p_response = &responses[1]; order = 2;
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
p_response = &responses[2]; order = 20;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
p_response = &responses[3]; order = 3;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
uint8_t block = receivedCmd[1];
if ( tagType == 7 ) {
uint16_t start = 4 * block;
/*if ( block < 4 ) {
//NTAG 215
uint8_t blockdata[50] = {
data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
data[3],data[4],data[5],data[6],
data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
0xe1,0x10,0x12,0x00,
0x03,0x00,0xfe,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,
0x00,0x00};
AppendCrc14443a(blockdata+start, 16);
EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
} else {*/
uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
emlGetMemBt( emdata, start, 16);
AppendCrc14443a(emdata, 16);
EmSendCmdEx(emdata, sizeof(emdata), false);
//}
p_response = NULL;
} else {
EmSendCmdEx(data+(4*block),16,false);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
}
} else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
uint8_t emdata[MAX_FRAME_SIZE];
int start = receivedCmd[1] * 4;
int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
emlGetMemBt( emdata, start, len);
AppendCrc14443a(emdata, len);
EmSendCmdEx(emdata, len+2, false);
p_response = NULL;
} else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
// ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
0x00,0x00};
AppendCrc14443a(data, sizeof(data)-2);
EmSendCmdEx(data,sizeof(data),false);
p_response = NULL;
} else if(receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
EmSendCmdEx(data,sizeof(data),false);
p_response = NULL;
} else if(receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
// number of counter
//uint8_t counter = receivedCmd[1];
//uint32_t val = bytes_to_num(receivedCmd+2,4);
// send ACK
uint8_t ack[] = {0x0a};
EmSendCmdEx(ack,sizeof(ack),false);
p_response = NULL;
} else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
p_response = &responses[9];
} else if(receivedCmd[0] == 0x50) { // Received a HALT
if (tracing) {
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
p_response = NULL;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
p_response = &responses[7];
} else {
p_response = &responses[5]; order = 7;
}
} else if(receivedCmd[0] == 0xE0) { // Received a RATS request
if (tagType == 1 || tagType == 2) { // RATS not supported
EmSend4bit(CARD_NACK_NA);
p_response = NULL;
} else {
p_response = &responses[6]; order = 70;
}
} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
if (tracing) {
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
uint32_t nonce = bytes_to_num(response5,4);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
//Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
if(flags & FLAG_NR_AR_ATTACK )
{
if(ar_nr_collected < 2){
// Avoid duplicates... probably not necessary, nr should vary.
//if(ar_nr_responses[3] != nr){
ar_nr_responses[ar_nr_collected*5] = 0;
ar_nr_responses[ar_nr_collected*5+1] = 0;
ar_nr_responses[ar_nr_collected*5+2] = nonce;
ar_nr_responses[ar_nr_collected*5+3] = nr;
ar_nr_responses[ar_nr_collected*5+4] = ar;
ar_nr_collected++;
//}
}
if(ar_nr_collected > 1 ) {
if (MF_DBGLEVEL >= 2) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // UID1
ar_nr_responses[1], // UID2
ar_nr_responses[2], // NT
ar_nr_responses[3], // AR1
ar_nr_responses[4], // NR1
ar_nr_responses[8], // AR2
ar_nr_responses[9] // NR2
);
Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // UID1
ar_nr_responses[1], // UID2
ar_nr_responses[2], // NT1
ar_nr_responses[3], // AR1
ar_nr_responses[4], // NR1
ar_nr_responses[7], // NT2
ar_nr_responses[8], // AR2
ar_nr_responses[9] // NR2
);
}
uint8_t len = ar_nr_collected*5*4;
cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
ar_nr_collected = 0;
memset(ar_nr_responses, 0x00, len);
}
}
} else if (receivedCmd[0] == 0x1a ) // ULC authentication
{
}
else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
{
if ( tagType == 7 ) {
p_response = &responses[8]; // PACK response
uint32_t pwd = bytes_to_num(receivedCmd+1,4);
if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
}
}
else {
// Check for ISO 14443A-4 compliant commands, look at left nibble
switch (receivedCmd[0]) {
case 0x02:
case 0x03: { // IBlock (command no CID)
dynamic_response_info.response[0] = receivedCmd[0];
dynamic_response_info.response[1] = 0x90;
dynamic_response_info.response[2] = 0x00;
dynamic_response_info.response_n = 3;
} break;
case 0x0B:
case 0x0A: { // IBlock (command CID)
dynamic_response_info.response[0] = receivedCmd[0];
dynamic_response_info.response[1] = 0x00;
dynamic_response_info.response[2] = 0x90;
dynamic_response_info.response[3] = 0x00;
dynamic_response_info.response_n = 4;
} break;
case 0x1A:
case 0x1B: { // Chaining command
dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
dynamic_response_info.response_n = 2;
} break;
case 0xaa:
case 0xbb: {
dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
dynamic_response_info.response_n = 2;
} break;
case 0xBA: { // ping / pong
dynamic_response_info.response[0] = 0xAB;
dynamic_response_info.response[1] = 0x00;
dynamic_response_info.response_n = 2;
} break;
case 0xCA:
case 0xC2: { // Readers sends deselect command
dynamic_response_info.response[0] = 0xCA;
dynamic_response_info.response[1] = 0x00;
dynamic_response_info.response_n = 2;
} break;
default: {
// Never seen this command before
if (tracing) {
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
Dbprintf("Received unknown command (len=%d):",len);
Dbhexdump(len,receivedCmd,false);
// Do not respond
dynamic_response_info.response_n = 0;
} break;
}
if (dynamic_response_info.response_n > 0) {
// Copy the CID from the reader query
dynamic_response_info.response[1] = receivedCmd[1];
// Add CRC bytes, always used in ISO 14443A-4 compliant cards
AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
dynamic_response_info.response_n += 2;
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
if (tracing) {
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
break;
}
p_response = &dynamic_response_info;
}
}
// Count number of wakeups received after a halt
if(order == 6 && lastorder == 5) { happened++; }
// Count number of other messages after a halt
if(order != 6 && lastorder == 5) { happened2++; }
if(cmdsRecvd > 999) {
DbpString("1000 commands later...");
break;
}
cmdsRecvd++;
if (p_response != NULL) {
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
// do the tracing for the previous reader request and this tag answer:
uint8_t par[MAX_PARITY_SIZE];
GetParity(p_response->response, p_response->response_n, par);
EmLogTrace(Uart.output,
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.parity,
p_response->response,
p_response->response_n,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
par);
}
if (!tracing) {
Dbprintf("Trace Full. Simulation stopped.");
break;
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
BigBuf_free_keep_EM();
LED_A_OFF();
if (MF_DBGLEVEL >= 4){
Dbprintf("-[ Wake ups after halt [%d]", happened);
Dbprintf("-[ Messages after halt [%d]", happened2);
Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
}
}
// prepare a delayed transfer. This simply shifts ToSend[] by a number
// of bits specified in the delay parameter.
void PrepareDelayedTransfer(uint16_t delay)
{
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
uint8_t bits_shifted = 0;
delay &= 0x07;
if (delay) {
for (uint16_t i = 0; i < delay; i++) {
bitmask |= (0x01 << i);
}
ToSend[ToSendMax++] = 0x00;
for (uint16_t i = 0; i < ToSendMax; i++) {
bits_to_shift = ToSend[i] & bitmask;
ToSend[i] = ToSend[i] >> delay;
ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
bits_shifted = bits_to_shift;
}
}
}
//-------------------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
// Parameter timing:
// if NULL: transfer at next possible time, taking into account
// request guard time and frame delay time
// if == 0: transfer immediately and return time of transfer
// if != 0: delay transfer until time specified
//-------------------------------------------------------------------------------------
static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
{
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
uint32_t ThisTransferTime = 0;
if (timing) {
if(*timing == 0) { // Measure time
*timing = (GetCountSspClk() + 8) & 0xfffffff8;
} else {
PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
}
if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
LastTimeProxToAirStart = *timing;
} else {
ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
while(GetCountSspClk() < ThisTransferTime);
LastTimeProxToAirStart = ThisTransferTime;
}
// clear TXRDY
AT91C_BASE_SSC->SSC_THR = SEC_Y;
uint16_t c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
if(c >= len) {
break;
}
}
}
NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
}
//-----------------------------------------------------------------------------
// Prepare reader command (in bits, support short frames) to send to FPGA
//-----------------------------------------------------------------------------
void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
{
int i, j;
int last;
uint8_t b;
ToSendReset();
// Start of Communication (Seq. Z)
ToSend[++ToSendMax] = SEC_Z;
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
last = 0;
size_t bytecount = nbytes(bits);
// Generate send structure for the data bits
for (i = 0; i < bytecount; i++) {
// Get the current byte to send
b = cmd[i];
size_t bitsleft = MIN((bits-(i*8)),8);
for (j = 0; j < bitsleft; j++) {
if (b & 1) {
// Sequence X
ToSend[++ToSendMax] = SEC_X;
LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
last = 1;
} else {
if (last == 0) {
// Sequence Z
ToSend[++ToSendMax] = SEC_Z;
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
} else {
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
}
b >>= 1;
}
// Only transmit parity bit if we transmitted a complete byte
if (j == 8 && parity != NULL) {
// Get the parity bit
if (parity[i>>3] & (0x80 >> (i&0x0007))) {
// Sequence X
ToSend[++ToSendMax] = SEC_X;
LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
last = 1;
} else {
if (last == 0) {
// Sequence Z
ToSend[++ToSendMax] = SEC_Z;
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
} else {
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
}
}
}
// End of Communication: Logic 0 followed by Sequence Y
if (last == 0) {
// Sequence Z
ToSend[++ToSendMax] = SEC_Z;
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
} else {
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
ToSend[++ToSendMax] = SEC_Y;
// Convert to length of command:
ToSendMax++;
}
//-----------------------------------------------------------------------------
// Prepare reader command to send to FPGA
//-----------------------------------------------------------------------------
void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
{
CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
}
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed (return 1) or field was gone (return 2)
// Or return 0 when command is captured
//-----------------------------------------------------------------------------
static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
{
*len = 0;
uint32_t timer = 0, vtime = 0;
int analogCnt = 0;
int analogAVG = 0;
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// Set ADC to read field strength
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
ADC_MODE_PRESCALE(63) |
ADC_MODE_STARTUP_TIME(1) |
ADC_MODE_SAMPLE_HOLD_TIME(15);
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
// start ADC
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
// Now run a 'software UART' on the stream of incoming samples.
UartInit(received, parity);
// Clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
for(;;) {
WDT_HIT();
if (BUTTON_PRESS()) return 1;
// test if the field exists
if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
analogCnt++;
analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
if (analogCnt >= 32) {
if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
vtime = GetTickCount();
if (!timer) timer = vtime;
// 50ms no field --> card to idle state
if (vtime - timer > 50) return 2;
} else
if (timer) timer = 0;
analogCnt = 0;
analogAVG = 0;
}
}
// receive and test the miller decoding
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding(b, 0)) {
*len = Uart.len;
return 0;
}
}
}
}
static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
{
uint8_t b;
uint16_t i = 0;
uint32_t ThisTransferTime;
// Modulate Manchester
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
// include correction bit if necessary
if (Uart.parityBits & 0x01) {
correctionNeeded = TRUE;
}
if(correctionNeeded) {
// 1236, so correction bit needed
i = 0;
} else {
i = 1;
}
// clear receiving shift register and holding register
while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
b = AT91C_BASE_SSC->SSC_RHR; (void) b;
while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
b = AT91C_BASE_SSC->SSC_RHR; (void) b;
// wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
if (AT91C_BASE_SSC->SSC_RHR) break;
}
while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
// Clear TXRDY:
AT91C_BASE_SSC->SSC_THR = SEC_F;
// send cycle
for(; i < respLen; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = resp[i++];
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
if(BUTTON_PRESS()) break;
}
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = SEC_F;
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
i++;
}
}
LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
return 0;
}
int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
// do the tracing for the previous reader request and this tag answer:
uint8_t par[1];
GetParity(&resp, 1, par);
EmLogTrace(Uart.output,
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.parity,
&resp,
1,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
par);
return res;
}
int EmSend4bit(uint8_t resp){
return EmSend4bitEx(resp, false);
}
int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
CodeIso14443aAsTagPar(resp, respLen, par);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
// do the tracing for the previous reader request and this tag answer:
EmLogTrace(Uart.output,
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.parity,
resp,
respLen,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
par);
return res;
}
int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
uint8_t par[MAX_PARITY_SIZE];
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
}
int EmSendCmd(uint8_t *resp, uint16_t respLen){
uint8_t par[MAX_PARITY_SIZE];
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, false, par);
}
int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
return EmSendCmdExPar(resp, respLen, false, par);
}
bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
{
if (tracing) {
// we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
// end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
// with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
uint16_t reader_modlen = reader_EndTime - reader_StartTime;
uint16_t approx_fdt = tag_StartTime - reader_EndTime;
uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
reader_EndTime = tag_StartTime - exact_fdt;
reader_StartTime = reader_EndTime - reader_modlen;
if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
return FALSE;
} else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
} else {
return TRUE;
}
}
//-----------------------------------------------------------------------------
// Wait a certain time for tag response
// If a response is captured return TRUE
// If it takes too long return FALSE
//-----------------------------------------------------------------------------
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
{
uint32_t c = 0x00;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is on with the appropriate LED
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
// Now get the answer from the card
DemodInit(receivedResponse, receivedResponsePar);
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
for(;;) {
WDT_HIT();
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(ManchesterDecoding(b, offset, 0)) {
NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
return TRUE;
} else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
return FALSE;
}
}
}
}
void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
{
CodeIso14443aBitsAsReaderPar(frame, bits, par);
// Send command to tag
TransmitFor14443a(ToSend, ToSendMax, timing);
if(trigger)
LED_A_ON();
// Log reader command in trace buffer
if (tracing) {
LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
}
}
void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
{
ReaderTransmitBitsPar(frame, len*8, par, timing);
}
void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
uint8_t par[MAX_PARITY_SIZE];
GetParity(frame, len/8, par);
ReaderTransmitBitsPar(frame, len, par, timing);
}
void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
uint8_t par[MAX_PARITY_SIZE];
GetParity(frame, len, par);
ReaderTransmitBitsPar(frame, len*8, par, timing);
}
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
{
if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
if (tracing) {
LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
}
return Demod.len;
}
int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
{
if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
if (tracing) {
LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
}
return Demod.len;
}
/* performs iso14443a anticollision procedure
* fills the uid pointer unless NULL
* fills resp_data unless NULL */
int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
uint8_t sel_all[] = { 0x93,0x20 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
uint8_t resp_par[MAX_PARITY_SIZE];
byte_t uid_resp[4];
size_t uid_resp_len;
uint8_t sak = 0x04; // cascade uid
int cascade_level = 0;
int len;
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
ReaderTransmitBitsPar(wupa,7,0, NULL);
// Receive the ATQA
if(!ReaderReceive(resp, resp_par)) return 0;
if(p_hi14a_card) {
memcpy(p_hi14a_card->atqa, resp, 2);
p_hi14a_card->uidlen = 0;
memset(p_hi14a_card->uid,0,10);
}
// clear uid
if (uid_ptr) {
memset(uid_ptr,0,10);
}
// check for proprietary anticollision:
if ((resp[0] & 0x1F) == 0) {
return 3;
}
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID
// While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
for(; sak & 0x04; cascade_level++) {
// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
// SELECT_ALL
ReaderTransmit(sel_all, sizeof(sel_all), NULL);
if (!ReaderReceive(resp, resp_par)) return 0;
if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
memset(uid_resp, 0, 4);
uint16_t uid_resp_bits = 0;
uint16_t collision_answer_offset = 0;
// anti-collision-loop:
while (Demod.collisionPos) {
Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
}
uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
uid_resp_bits++;
// construct anticollosion command:
sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
sel_uid[2+i] = uid_resp[i];
}
collision_answer_offset = uid_resp_bits%8;
ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
}
// finally, add the last bits and BCC of the UID
for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
}
} else { // no collision, use the response to SELECT_ALL as current uid
memcpy(uid_resp, resp, 4);
}
uid_resp_len = 4;
// calculate crypto UID. Always use last 4 Bytes.
if(cuid_ptr) {
*cuid_ptr = bytes_to_num(uid_resp, 4);
}
// Construct SELECT UID command
sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
memcpy(sel_uid+2, uid_resp, 4); // the UID
sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
AppendCrc14443a(sel_uid, 7); // calculate and add CRC
ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
// Receive the SAK
if (!ReaderReceive(resp, resp_par)) return 0;
sak = resp[0];
// Test if more parts of the uid are coming
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
// http://www.nxp.com/documents/application_note/AN10927.pdf
uid_resp[0] = uid_resp[1];
uid_resp[1] = uid_resp[2];
uid_resp[2] = uid_resp[3];
uid_resp_len = 3;
}
if(uid_ptr) {
memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
}
if(p_hi14a_card) {
memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
p_hi14a_card->uidlen += uid_resp_len;
}
}
if(p_hi14a_card) {
p_hi14a_card->sak = sak;
p_hi14a_card->ats_len = 0;
}
// non iso14443a compliant tag
if( (sak & 0x20) == 0) return 2;
// Request for answer to select
AppendCrc14443a(rats, 2);
ReaderTransmit(rats, sizeof(rats), NULL);
if (!(len = ReaderReceive(resp, resp_par))) return 0;
if(p_hi14a_card) {
memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
p_hi14a_card->ats_len = len;
}
// reset the PCB block number
iso14_pcb_blocknum = 0;
// set default timeout based on ATS
iso14a_set_ATS_timeout(resp);
return 1;
}
void iso14443a_setup(uint8_t fpga_minor_mode) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Set up the synchronous serial port
FpgaSetupSsc();
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Signal field is on with the appropriate LED
if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
|| fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
LED_D_ON();
} else {
LED_D_OFF();
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
// Start the timer
StartCountSspClk();
DemodReset();
UartReset();
NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
iso14a_set_timeout(10*106); // 10ms default
}
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
uint8_t parity[MAX_PARITY_SIZE];
uint8_t real_cmd[cmd_len+4];
real_cmd[0] = 0x0a; //I-Block
// put block number into the PCB
real_cmd[0] |= iso14_pcb_blocknum;
real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
memcpy(real_cmd+2, cmd, cmd_len);
AppendCrc14443a(real_cmd,cmd_len+2);
ReaderTransmit(real_cmd, cmd_len+4, NULL);
size_t len = ReaderReceive(data, parity);
uint8_t *data_bytes = (uint8_t *) data;
if (!len)
return 0; //DATA LINK ERROR
// if we received an I- or R(ACK)-Block with a block number equal to the
// current block number, toggle the current block number
else if (len >= 4 // PCB+CID+CRC = 4 bytes
&& ((data_bytes[0] & 0xC0) == 0 // I-Block
|| (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
&& (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
{
iso14_pcb_blocknum ^= 1;
}
return len;
}
//-----------------------------------------------------------------------------
// Read an ISO 14443a tag. Send out commands and store answers.
//
//-----------------------------------------------------------------------------
void ReaderIso14443a(UsbCommand *c)
{
iso14a_command_t param = c->arg[0];
uint8_t *cmd = c->d.asBytes;
size_t len = c->arg[1] & 0xffff;
size_t lenbits = c->arg[1] >> 16;
uint32_t timeout = c->arg[2];
uint32_t arg0 = 0;
byte_t buf[USB_CMD_DATA_SIZE];
uint8_t par[MAX_PARITY_SIZE];
if(param & ISO14A_CONNECT) {
clear_trace();
}
set_tracing(TRUE);
if(param & ISO14A_REQUEST_TRIGGER) {
iso14a_set_trigger(TRUE);
}
if(param & ISO14A_CONNECT) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
arg0 = iso14443a_select_card(NULL,card,NULL);
cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
}
}
if(param & ISO14A_SET_TIMEOUT) {
iso14a_set_timeout(timeout);
}
if(param & ISO14A_APDU) {
arg0 = iso14_apdu(cmd, len, buf);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
if(param & ISO14A_RAW) {
if(param & ISO14A_APPEND_CRC) {
if(param & ISO14A_TOPAZMODE) {
AppendCrc14443b(cmd,len);
} else {
AppendCrc14443a(cmd,len);
}
len += 2;
if (lenbits) lenbits += 16;
}
if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
if(param & ISO14A_TOPAZMODE) {
int bits_to_send = lenbits;
uint16_t i = 0;
ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
bits_to_send -= 7;
while (bits_to_send > 0) {
ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
bits_to_send -= 8;
}
} else {
GetParity(cmd, lenbits/8, par);
ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
}
} else { // want to send complete bytes only
if(param & ISO14A_TOPAZMODE) {
uint16_t i = 0;
ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
while (i < len) {
ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
}
} else {
ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
}
}
arg0 = ReaderReceive(buf, par);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
if(param & ISO14A_REQUEST_TRIGGER) {
iso14a_set_trigger(FALSE);
}
if(param & ISO14A_NO_DISCONNECT) {
return;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
// Determine the distance between two nonces.
// Assume that the difference is small, but we don't know which is first.
// Therefore try in alternating directions.
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
uint16_t i;
uint32_t nttmp1, nttmp2;
if (nt1 == nt2) return 0;
nttmp1 = nt1;
nttmp2 = nt2;
for (i = 1; i < 0xFFFF; i++) {
nttmp1 = prng_successor(nttmp1, 1);
if (nttmp1 == nt2) return i;
nttmp2 = prng_successor(nttmp2, 1);
if (nttmp2 == nt1) return -i;
}
return(-99999); // either nt1 or nt2 are invalid nonces
}
//-----------------------------------------------------------------------------
// Recover several bits of the cypher stream. This implements (first stages of)
// the algorithm described in "The Dark Side of Security by Obscurity and
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
void ReaderMifare(bool first_try)
{
// Mifare AUTH
uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
static uint8_t mf_nr_ar3;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
if (first_try) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
}
// free eventually allocated BigBuf memory. We want all for tracing.
BigBuf_free();
clear_trace();
set_tracing(TRUE);
byte_t nt_diff = 0;
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0;
bool led_on = TRUE;
uint8_t uid[10] ={0};
uint32_t cuid;
uint32_t nt = 0;
uint32_t previous_nt = 0;
static uint32_t nt_attacked = 0;
byte_t par_list[8] = {0x00};
byte_t ks_list[8] = {0x00};
#define PRNG_SEQUENCE_LENGTH (1 << 16);
static uint32_t sync_time = 0;
static uint32_t sync_cycles = 0;
int catch_up_cycles = 0;
int last_catch_up = 0;
uint16_t consecutive_resyncs = 0;
int isOK = 0;
if (first_try) {
mf_nr_ar3 = 0;
sync_time = GetCountSspClk() & 0xfffffff8;
sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
nt_attacked = 0;
nt = 0;
par[0] = 0;
}
else {
// we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
mf_nr_ar3++;
mf_nr_ar[3] = mf_nr_ar3;
par[0] = par_low;
}
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
#define MAX_UNEXPECTED_RANDOM 5 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
#define MAX_SYNC_TRIES 16
uint16_t unexpected_random = 0;
uint16_t sync_tries = 0;
int16_t debug_info_nr = -1;
uint32_t debug_info[MAX_SYNC_TRIES];
for(uint16_t i = 0; TRUE; i++) {
LED_C_ON();
WDT_HIT();
// Test if the action was cancelled
if(BUTTON_PRESS()) {
isOK = -1;
break;
}
if(!iso14443a_select_card(uid, NULL, &cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
continue;
}
if (debug_info_nr == -1) {
sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
catch_up_cycles = 0;
// if we missed the sync time already, advance to the next nonce repeat
while(GetCountSspClk() > sync_time) {
sync_time = (sync_time & 0xfffffff8) + sync_cycles;
}
// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
} else {
ReaderTransmit(mf_auth, sizeof(mf_auth), NULL);
}
// Receive the (4 Byte) "random" nonce
if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
continue;
}
previous_nt = nt;
nt = bytes_to_num(receivedAnswer, 4);
// Transmit reader nonce with fake par
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
int nt_distance = dist_nt(previous_nt, nt);
if (nt_distance == 0) {
nt_attacked = nt;
} else {
if (nt_distance == -99999) { // invalid nonce received
unexpected_random++;
if (!nt_attacked && unexpected_random > MAX_UNEXPECTED_RANDOM) {
isOK = -3; // Card has an unpredictable PRNG. Give up
break;
} else {
continue; // continue trying...
}
}
if (++sync_tries > MAX_SYNC_TRIES) {
if (sync_tries > 2 * MAX_SYNC_TRIES) {
isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
break;
} else { // continue for a while, just to collect some debug info
debug_info[++debug_info_nr] = nt_distance;
continue;
}
}
sync_cycles = (sync_cycles - nt_distance);
if (sync_cycles <= 0) {
sync_cycles += PRNG_SEQUENCE_LENGTH;
}
if (MF_DBGLEVEL >= 3) {
Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
}
continue;
}
}
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
catch_up_cycles = -dist_nt(nt_attacked, nt);
if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
catch_up_cycles = 0;
continue;
}
if (catch_up_cycles == last_catch_up) {
consecutive_resyncs++;
}
else {
last_catch_up = catch_up_cycles;
consecutive_resyncs = 0;
}
if (consecutive_resyncs < 3) {
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
}
else {
sync_cycles = sync_cycles + catch_up_cycles;
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
}
continue;
}
consecutive_resyncs = 0;
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
if (ReaderReceive(receivedAnswer, receivedAnswerPar))
{
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
if (nt_diff == 0)
{
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
}
led_on = !led_on;
if(led_on) LED_B_ON(); else LED_B_OFF();
par_list[nt_diff] = SwapBits(par[0], 8);
ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
// Test if the information is complete
if (nt_diff == 0x07) {
isOK = 1;
break;
}
nt_diff = (nt_diff + 1) & 0x07;
mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
par[0] = par_low;
} else {
if (nt_diff == 0 && first_try)
{
par[0]++;
if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
isOK = -2;
break;
}
} else {
par[0] = ((par[0] & 0x1F) + 1) | par_low;
}
}
}
mf_nr_ar[3] &= 0x1F;
if (isOK == -4) {
if (MF_DBGLEVEL >= 3) {
for(uint16_t i = 0; i < MAX_SYNC_TRIES; i++) {
Dbprintf("collected debug info[%d] = %d\n", i, debug_info[i]);
}
}
}
byte_t buf[28];
memcpy(buf + 0, uid, 4);
num_to_bytes(nt, 4, buf + 4);
memcpy(buf + 8, par_list, 8);
memcpy(buf + 16, ks_list, 8);
memcpy(buf + 24, mf_nr_ar, 4);
cmd_send(CMD_ACK,isOK,0,0,buf,28);
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(FALSE);
}
/**
*MIFARE 1K simulate.
*
*@param flags :
* FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
* 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
* 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
* FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
*/
void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
{
int cardSTATE = MFEMUL_NOFIELD;
int _7BUID = 0;
int vHf = 0; // in mV
int res;
uint32_t selTimer = 0;
uint32_t authTimer = 0;
uint16_t len = 0;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardAUTHKEY = 0xff; // no authentication
// uint32_t cardRr = 0;
uint32_t cuid = 0;
//uint32_t rn_enc = 0;
uint32_t ans = 0;
uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint32_t numReads = 0;//Counts numer of times reader read a block
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
uint8_t response[MAX_MIFARE_FRAME_SIZE];
uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
//uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
uint8_t rSAK1[] = {0x04, 0xda, 0x17};
uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
// This can be used in a reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0;
// Authenticate response - nonce
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
//-- Determine the UID
// Can be set from emulator memory, incoming data
// and can be 7 or 4 bytes long
if (flags & FLAG_4B_UID_IN_DATA)
{
// 4B uid comes from data-portion of packet
memcpy(rUIDBCC1,datain,4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
} else if (flags & FLAG_7B_UID_IN_DATA) {
// 7B uid comes from data-portion of packet
memcpy(&rUIDBCC1[1],datain,3);
memcpy(rUIDBCC2, datain+3, 4);
_7BUID = true;
} else {
// get UID from emul memory
emlGetMemBt(receivedCmd, 7, 1);
_7BUID = !(receivedCmd[0] == 0x00);
if (!_7BUID) { // ---------- 4BUID
emlGetMemBt(rUIDBCC1, 0, 4);
} else { // ---------- 7BUID
emlGetMemBt(&rUIDBCC1[1], 0, 3);
emlGetMemBt(rUIDBCC2, 3, 4);
}
}
// save uid.
ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
if ( _7BUID )
ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
/*
* Regardless of what method was used to set the UID, set fifth byte and modify
* the ATQA for 4 or 7-byte UID
*/
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
if (_7BUID) {
rATQA[0] = 0x44;
rUIDBCC1[0] = 0x88;
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
}
if (MF_DBGLEVEL >= 1) {
if (!_7BUID) {
Dbprintf("4B UID: %02x%02x%02x%02x",
rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
} else {
Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
}
}
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// free eventually allocated BigBuf memory but keep Emulator Memory
BigBuf_free_keep_EM();
// clear trace
clear_trace();
set_tracing(TRUE);
bool finished = FALSE;
while (!BUTTON_PRESS() && !finished) {
WDT_HIT();
// find reader field
if (cardSTATE == MFEMUL_NOFIELD) {
vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
if (vHf > MF_MINFIELDV) {
cardSTATE_TO_IDLE();
LED_A_ON();
}
}
if(cardSTATE == MFEMUL_NOFIELD) continue;
//Now, get data
res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
if (res == 2) { //Field is off!
cardSTATE = MFEMUL_NOFIELD;
LEDsoff();
continue;
} else if (res == 1) {
break; //return value 1 means button press
}
// REQ or WUP request in ANY state and WUP in HALTED state
if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
selTimer = GetTickCount();
EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
cardSTATE = MFEMUL_SELECT1;
// init crypto block
LED_B_OFF();
LED_C_OFF();
crypto1_destroy(pcs);
cardAUTHKEY = 0xff;
continue;
}
switch (cardSTATE) {
case MFEMUL_NOFIELD:
case MFEMUL_HALTED:
case MFEMUL_IDLE:{
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
case MFEMUL_SELECT1:{
// select all
if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
break;
}
if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
{
Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
}
// select card
if (len == 9 &&
(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
cuid = bytes_to_num(rUIDBCC1, 4);
if (!_7BUID) {
cardSTATE = MFEMUL_WORK;
LED_B_ON();
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
break;
} else {
cardSTATE = MFEMUL_SELECT2;
}
}
break;
}
case MFEMUL_AUTH1:{
if( len != 8)
{
cardSTATE_TO_IDLE();
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
uint32_t ar = bytes_to_num(receivedCmd, 4);
uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
//Collect AR/NR
//if(ar_nr_collected < 2 && cardAUTHSC == 2){
if(ar_nr_collected < 2){
if(ar_nr_responses[2] != ar)
{// Avoid duplicates... probably not necessary, ar should vary.
//ar_nr_responses[ar_nr_collected*5] = 0;
//ar_nr_responses[ar_nr_collected*5+1] = 0;
ar_nr_responses[ar_nr_collected*5+2] = nonce;
ar_nr_responses[ar_nr_collected*5+3] = nr;
ar_nr_responses[ar_nr_collected*5+4] = ar;
ar_nr_collected++;
}
// Interactive mode flag, means we need to send ACK
if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
{
finished = true;
}
}
// --- crypto
//crypto1_word(pcs, ar , 1);
//cardRr = nr ^ crypto1_word(pcs, 0, 0);
//test if auth OK
//if (cardRr != prng_successor(nonce, 64)){
//if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
// cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
// cardRr, prng_successor(nonce, 64));
// Shouldn't we respond anything here?
// Right now, we don't nack or anything, which causes the
// reader to do a WUPA after a while. /Martin
// -- which is the correct response. /piwi
//cardSTATE_TO_IDLE();
//LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
//break;
//}
ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
num_to_bytes(ans, 4, rAUTH_AT);
// --- crypto
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
LED_C_ON();
cardSTATE = MFEMUL_WORK;
if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
GetTickCount() - authTimer);
break;
}
case MFEMUL_SELECT2:{
if (!len) {
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
break;
}
// select 2 card
if (len == 9 &&
(receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
EmSendCmd(rSAK, sizeof(rSAK));
cuid = bytes_to_num(rUIDBCC2, 4);
cardSTATE = MFEMUL_WORK;
LED_B_ON();
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
break;
}
// i guess there is a command). go into the work state.
if (len != 4) {
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
cardSTATE = MFEMUL_WORK;
//goto lbWORK;
//intentional fall-through to the next case-stmt
}
case MFEMUL_WORK:{
if (len == 0) {
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
bool encrypted_data = (cardAUTHKEY != 0xFF) ;
if(encrypted_data) {
// decrypt seqence
mf_crypto1_decrypt(pcs, receivedCmd, len);
}
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
authTimer = GetTickCount();
cardAUTHSC = receivedCmd[1] / 4; // received block num
cardAUTHKEY = receivedCmd[0] - 0x60;
crypto1_destroy(pcs);//Added by martin
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
if (!encrypted_data) { // first authentication
if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
} else { // nested authentication
if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
num_to_bytes(ans, 4, rAUTH_AT);
}
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
//Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
cardSTATE = MFEMUL_AUTH1;
break;
}
// rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
// BUT... ACK --> NACK
if (len == 1 && receivedCmd[0] == CARD_ACK) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
break;
}
// rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
break;
}
if(len != 4) {
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
if(receivedCmd[0] == 0x30 // read block
|| receivedCmd[0] == 0xA0 // write block
|| receivedCmd[0] == 0xC0 // inc
|| receivedCmd[0] == 0xC1 // dec
|| receivedCmd[0] == 0xC2 // restore
|| receivedCmd[0] == 0xB0) { // transfer
if (receivedCmd[1] >= 16 * 4) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
break;
}
if (receivedCmd[1] / 4 != cardAUTHSC) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
break;
}
}
// read block
if (receivedCmd[0] == 0x30) {
if (MF_DBGLEVEL >= 4) {
Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
}
emlGetMem(response, receivedCmd[1], 1);
AppendCrc14443a(response, 16);
mf_crypto1_encrypt(pcs, response, 18, response_par);
EmSendCmdPar(response, 18, response_par);
numReads++;
if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
Dbprintf("%d reads done, exiting", numReads);
finished = true;
}
break;
}
// write block
if (receivedCmd[0] == 0xA0) {
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
cardSTATE = MFEMUL_WRITEBL2;
cardWRBL = receivedCmd[1];
break;
}
// increment, decrement, restore
if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
if (emlCheckValBl(receivedCmd[1])) {
if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
break;
}
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
if (receivedCmd[0] == 0xC1)
cardSTATE = MFEMUL_INTREG_INC;
if (receivedCmd[0] == 0xC0)
cardSTATE = MFEMUL_INTREG_DEC;
if (receivedCmd[0] == 0xC2)
cardSTATE = MFEMUL_INTREG_REST;
cardWRBL = receivedCmd[1];
break;
}
// transfer
if (receivedCmd[0] == 0xB0) {
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
else
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
break;
}
// halt
if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_HALTED;
if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
// RATS
if (receivedCmd[0] == 0xe0) {//RATS
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
break;
}
// command not allowed
if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
break;
}
case MFEMUL_WRITEBL2:{
if (len == 18){
mf_crypto1_decrypt(pcs, receivedCmd, len);
emlSetMem(receivedCmd, cardWRBL, 1);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
cardSTATE = MFEMUL_WORK;
} else {
cardSTATE_TO_IDLE();
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
break;
}
case MFEMUL_INTREG_INC:{
mf_crypto1_decrypt(pcs, receivedCmd, len);
memcpy(&ans, receivedCmd, 4);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE();
break;
}
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
cardINTREG = cardINTREG + ans;
cardSTATE = MFEMUL_WORK;
break;
}
case MFEMUL_INTREG_DEC:{
mf_crypto1_decrypt(pcs, receivedCmd, len);
memcpy(&ans, receivedCmd, 4);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE();
break;
}
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK;
break;
}
case MFEMUL_INTREG_REST:{
mf_crypto1_decrypt(pcs, receivedCmd, len);
memcpy(&ans, receivedCmd, 4);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE();
break;
}
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
cardSTATE = MFEMUL_WORK;
break;
}
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
{
//May just aswell send the collected ar_nr in the response aswell
uint8_t len = ar_nr_collected*5*4;
cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
}
if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
{
if(ar_nr_collected > 1 ) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // UID1
ar_nr_responses[1], // UID2
ar_nr_responses[2], // NT
ar_nr_responses[3], // AR1
ar_nr_responses[4], // NR1
ar_nr_responses[8], // AR2
ar_nr_responses[9] // NR2
);
Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // UID1
ar_nr_responses[1], // UID2
ar_nr_responses[2], // NT1
ar_nr_responses[3], // AR1
ar_nr_responses[4], // NR1
ar_nr_responses[7], // NT2
ar_nr_responses[8], // AR2
ar_nr_responses[9] // NR2
);
} else {
Dbprintf("Failed to obtain two AR/NR pairs!");
if(ar_nr_collected > 0 ) {
Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
ar_nr_responses[0], // UID1
ar_nr_responses[1], // UID2
ar_nr_responses[2], // NT
ar_nr_responses[3], // AR1
ar_nr_responses[4] // NR1
);
}
}
}
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
}
//-----------------------------------------------------------------------------
// MIFARE sniffer.
//
//-----------------------------------------------------------------------------
void RAMFUNC SniffMifare(uint8_t param) {
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
// C(red) A(yellow) B(green)
LEDsoff();
// init trace buffer
clear_trace();
set_tracing(TRUE);
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
// The response (tag -> reader) that we're receiving.
uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// free eventually allocated BigBuf memory
BigBuf_free();
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
bool ReaderIsActive = FALSE;
bool TagIsActive = FALSE;
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse, receivedResponsePar);
// Set up the demodulator for the reader -> tag commands
UartInit(receivedCmd, receivedCmdPar);
// Setup for the DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
LED_D_OFF();
// init sniffer
MfSniffInit();
// And now we loop, receiving samples.
for(uint32_t sniffCounter = 0; TRUE; ) {
if(BUTTON_PRESS()) {
DbpString("cancelled by button");
break;
}
LED_A_ON();
WDT_HIT();
if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
// check if a transaction is completed (timeout after 2000ms).
// if yes, stop the DMA transfer and send what we have so far to the client
if (MfSniffSend(2000)) {
// Reset everything - we missed some sniffed data anyway while the DMA was stopped
sniffCounter = 0;
data = dmaBuf;
maxDataLen = 0;
ReaderIsActive = FALSE;
TagIsActive = FALSE;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
}
}
int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
} else {
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
}
// test for length of buffer
if(dataLen > maxDataLen) { // we are more behind than ever...
maxDataLen = dataLen;
if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
break;
}
}
if(dataLen < 1) continue;
// primary buffer was stopped ( <-- we lost data!
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
}
// secondary buffer sets as primary, secondary buffer was stopped
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
LED_A_OFF();
if (sniffCounter & 0x01) {
if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
LED_C_INV();
if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
/* And ready to receive another command. */
UartReset();
/* And also reset the demod code */
DemodReset();
}
ReaderIsActive = (Uart.state != STATE_UNSYNCD);
}
if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
LED_C_INV();
if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
// And ready to receive another response.
DemodReset();
// And reset the Miller decoder including its (now outdated) input buffer
UartInit(receivedCmd, receivedCmdPar);
// why not UartReset?
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
}
}
previous_data = *data;
sniffCounter++;
data++;
if(data == dmaBuf + DMA_BUFFER_SIZE) {
data = dmaBuf;
}
} // main cycle
FpgaDisableSscDma();
MfSniffEnd();
LEDsoff();
Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
}