//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // Modified 2018, 2020 iceman // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency ISO14443B commands //----------------------------------------------------------------------------- #include "cmdhf14b.h" #include #include "iso14b.h" #include "fileutils.h" #include "cmdparser.h" // command_t #include "commonutil.h" // ARRAYLEN #include "comms.h" // clearCommandBuffer #include "emv/emvcore.h" // TLVPrintFromBuffer #include "cmdtrace.h" #include "cliparser.h" #include "crc16.h" #include "cmdhf14a.h" #include "protocols.h" // definitions of ISO14B/7816 protocol #include "emv/apduinfo.h" // GetAPDUCodeDescription #include "mifare/ndef.h" // NDEFRecordsDecodeAndPrint #define TIMEOUT 2000 // iso14b apdu input frame length static uint16_t apdu_frame_length = 0; uint16_t ats_fsc[] = {16, 24, 32, 40, 48, 64, 96, 128, 256}; bool apdu_in_framing_enable = true; static int CmdHelp(const char *Cmd); static int usage_hf_14b_write_srx(void) { PrintAndLogEx(NORMAL, "Usage: hf 14b [h] sriwrite <1|2> "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " <1|2> 1 = SRIX4K , 2 = SRI512"); PrintAndLogEx(NORMAL, " (hex) block number depends on tag, special block == FF"); PrintAndLogEx(NORMAL, " hex bytes of data to be written"); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriwrite 1 7F 11223344")); PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriwrite 1 FF 11223344")); PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriwrite 2 15 11223344")); PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriwrite 2 FF 11223344")); return PM3_SUCCESS; } static int switch_off_field_14b(void) { clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_DISCONNECT, 0, 0, NULL, 0); return PM3_SUCCESS; } static uint16_t get_sw(uint8_t *d, uint8_t n) { if (n < 2) return 0; n -= 2; return d[n] * 0x0100 + d[n + 1]; } static bool wait_cmd_14b(bool verbose) { PacketResponseNG resp; if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { uint16_t len = (resp.oldarg[1] & 0xFFFF); uint8_t *data = resp.data.asBytes; if (verbose) { if (len >= 3) { bool crc = check_crc(CRC_14443_B, data, len); PrintAndLogEx(SUCCESS, "len %u | %s[%02X %02X] %s", len, sprint_hex(data, len - 2), data[len - 2], data[len - 1], (crc) ? _GREEN_("ok") : _RED_("fail") ); } else if (len == 0) { if (verbose) PrintAndLogEx(INFO, "no response from tag"); } else { PrintAndLogEx(SUCCESS, "len %u | %s", len, sprint_hex(data, len)); } } return true; } else { PrintAndLogEx(WARNING, "command execution timeout"); return false; } } static int CmdHF14BList(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdTraceList("14b"); return PM3_SUCCESS; } static int CmdHF14BSim(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf 14b sim", "Simulate a ISO/IEC 14443 type B tag with 4 byte UID / PUPI", "hf 14b sim\n" "hf 14b sim -u 11AA33BB" ); void *argtable[] = { arg_param_begin, arg_strx0("u", "uid", "hex", "4byte UID/PUPI"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); uint8_t pupi[4]; int n = 0; CLIParamHexToBuf(arg_get_str(ctx, 1), pupi, sizeof(pupi), &n); CLIParserFree(ctx); clearCommandBuffer(); SendCommandNG(CMD_HF_ISO14443B_SIMULATE, pupi, sizeof(pupi)); return PM3_SUCCESS; } static int CmdHF14BSniff(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf 14b sniff", "Sniff the communication reader and tag", "hf 14b sniff" ); void *argtable[] = { arg_param_begin, arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); CLIParserFree(ctx); PacketResponseNG resp; clearCommandBuffer(); SendCommandNG(CMD_HF_ISO14443B_SNIFF, NULL, 0); WaitForResponse(CMD_HF_ISO14443B_SNIFF, &resp); PrintAndLogEx(HINT, "Try `" _YELLOW_("hf 14b list") "` to view captured tracelog"); PrintAndLogEx(HINT, "Try `" _YELLOW_("trace save h") "` to save tracelog for later analysing"); return PM3_SUCCESS; } static int CmdHF14BCmdRaw(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf 14b raw", "Sends raw bytes to card ", "hf 14b raw -s -c -k 0200a40400\n" "hf 14b raw --sr -c -k 0200a40400\n" "hf 14b raw --cts -c -k 0200a40400\n" ); void *argtable[] = { arg_param_begin, arg_lit0("k", "keep", "leave the signal field ON after receive response"), arg_lit0("s", "std", "activate field and select standard card"), arg_lit0(NULL, "sr", "activate field and select SRx ST"), arg_lit0(NULL, "cts", "activate field and select ASK C-ticket"), arg_lit0("c", "crc", "calculate and append CRC"), arg_lit0("r", "noresponse", "do not read response"), arg_int0("t", "timeout", "dec", "timeout in ms"), arg_lit0("v", "verbose", "verbose"), arg_strx0(NULL, NULL, "", "bytes to send"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, false); bool select = false; bool keep_field_on = arg_get_lit(ctx, 1); bool select_std = arg_get_lit(ctx, 2); bool select_sr = arg_get_lit(ctx, 3); bool select_cts = arg_get_lit(ctx, 4); bool add_crc = arg_get_lit(ctx, 5); bool read_reply = !arg_get_lit(ctx, 6); int user_timeout = arg_get_int_def(ctx, 7, -1); bool verbose = arg_get_lit(ctx, 8); uint32_t flags = ISO14B_CONNECT; if (add_crc) { flags |= ISO14B_APPEND_CRC; } if (select_std) { select = true; flags |= ISO14B_SELECT_STD; if (verbose) PrintAndLogEx(INFO, "using standard select"); } else if (select_sr) { select = true; flags |= ISO14B_SELECT_SR; if (verbose) PrintAndLogEx(INFO, "using SRx ST select"); } else if (select_cts) { select = true; flags |= ISO14B_SELECT_CTS; if (verbose) PrintAndLogEx(INFO, "using ASK C-ticket select"); } uint8_t data[PM3_CMD_DATA_SIZE] = {0x00}; int datalen = 0; CLIParamHexToBuf(arg_get_str(ctx, 9), data, sizeof(data), &datalen); CLIParserFree(ctx); uint32_t time_wait = 0; if (user_timeout > 0) { #define MAX_14B_TIMEOUT 40542464 // = (2^32-1) * (8*16) / 13560000Hz * 1000ms/s flags |= ISO14B_SET_TIMEOUT; if (user_timeout > MAX_14B_TIMEOUT) { user_timeout = MAX_14B_TIMEOUT; PrintAndLogEx(INFO, "set timeout to 40542 seconds (11.26 hours). The max we can wait for response"); } time_wait = 13560000 / 1000 / (8 * 16) * user_timeout; // timeout in ETUs (time to transfer 1 bit, approx. 9.4 us) if (verbose) PrintAndLogEx(INFO, "using timeout %u", user_timeout); } if (keep_field_on == 0) flags |= ISO14B_DISCONNECT; if (datalen > 0) flags |= ISO14B_RAW; // Max buffer is PM3_CMD_DATA_SIZE datalen = (datalen > PM3_CMD_DATA_SIZE) ? PM3_CMD_DATA_SIZE : datalen; clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443B_COMMAND, flags, datalen, time_wait, data, datalen); if (read_reply == false) { return PM3_SUCCESS; } bool success = true; // get back iso14b_card_select_t, don't print it. if (select) { success = wait_cmd_14b(verbose); } // get back response from the raw bytes you sent. if (success && datalen > 0) { wait_cmd_14b(true); } return PM3_SUCCESS; } static bool get_14b_UID(iso14b_card_select_t *card) { if (card == NULL) return false; int status = 0; PacketResponseNG resp; clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0, NULL, 0); if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { status = resp.oldarg[0]; if (status == 0) { memcpy(card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t)); return true; } } // test 14b standard clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_DISCONNECT, 0, 0, NULL, 0); if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { status = resp.oldarg[0]; if (status == 0) { memcpy(card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t)); return true; } } PrintAndLogEx(WARNING, "timeout while waiting for reply."); return false; } // print full atqb info // bytes // 0,1,2,3 = application data // 4 = bit rate capacity // 5 = max frame size / -4 info // 6 = FWI / Coding options static int print_atqb_resp(uint8_t *data, uint8_t cid) { //PrintAndLogEx(SUCCESS, " UID: %s", sprint_hex(data+1,4)); PrintAndLogEx(SUCCESS, " App Data: %s", sprint_hex(data, 4)); PrintAndLogEx(SUCCESS, " Protocol: %s", sprint_hex(data + 4, 3)); uint8_t BitRate = data[4]; if (!BitRate) PrintAndLogEx(SUCCESS, " Bit Rate: 106 kbit/s only PICC <-> PCD"); if (BitRate & 0x10) PrintAndLogEx(SUCCESS, " Bit Rate: 212 kbit/s PICC -> PCD supported"); if (BitRate & 0x20) PrintAndLogEx(SUCCESS, " Bit Rate: 424 kbit/s PICC -> PCD supported"); if (BitRate & 0x40) PrintAndLogEx(SUCCESS, " Bit Rate: 847 kbit/s PICC -> PCD supported"); if (BitRate & 0x01) PrintAndLogEx(SUCCESS, " Bit Rate: 212 kbit/s PICC <- PCD supported"); if (BitRate & 0x02) PrintAndLogEx(SUCCESS, " Bit Rate: 424 kbit/s PICC <- PCD supported"); if (BitRate & 0x04) PrintAndLogEx(SUCCESS, " Bit Rate: 847 kbit/s PICC <- PCD supported"); if (BitRate & 0x80) PrintAndLogEx(SUCCESS, " Same bit rate <-> required"); uint16_t maxFrame = data[5] >> 4; if (maxFrame < 5) maxFrame = 8 * maxFrame + 16; else if (maxFrame == 5) maxFrame = 64; else if (maxFrame == 6) maxFrame = 96; else if (maxFrame == 7) maxFrame = 128; else if (maxFrame == 8) maxFrame = 256; else maxFrame = 257; PrintAndLogEx(SUCCESS, "Max Frame Size: %u%s bytes", maxFrame, (maxFrame == 257) ? "+ RFU" : ""); uint8_t protocolT = data[5] & 0xF; PrintAndLogEx(SUCCESS, " Protocol Type: Protocol is %scompliant with ISO/IEC 14443-4", (protocolT) ? "" : "not "); uint8_t fwt = data[6] >> 4; if (fwt < 16) { uint32_t etus = (32 << fwt); uint32_t fwt_time = (302 << fwt); PrintAndLogEx(SUCCESS, "Frame Wait Integer: %u - %u ETUs | %u us", fwt, etus, fwt_time); } else { PrintAndLogEx(SUCCESS, "Frame Wait Integer: %u - RFU", fwt); } PrintAndLogEx(SUCCESS, " App Data Code: Application is %s", (data[6] & 4) ? "Standard" : "Proprietary"); PrintAndLogEx(SUCCESS, " Frame Options: NAD is %ssupported", (data[6] & 2) ? "" : "not "); PrintAndLogEx(SUCCESS, " Frame Options: CID is %ssupported", (data[6] & 1) ? "" : "not "); PrintAndLogEx(SUCCESS, "Tag :"); PrintAndLogEx(SUCCESS, " Max Buf Length: %u (MBLI) %s", cid >> 4, (cid & 0xF0) ? "" : "chained frames not supported"); PrintAndLogEx(SUCCESS, " CID : %u", cid & 0x0f); return PM3_SUCCESS; } // get SRx chip model (from UID) // from ST Microelectronics static char *get_st_chip_model(uint8_t data) { static char model[20]; char *retStr = model; memset(model, 0, sizeof(model)); switch (data) { case 0x0: sprintf(retStr, "SRIX4K (Special)"); break; case 0x2: sprintf(retStr, "SR176"); break; case 0x3: sprintf(retStr, "SRIX4K"); break; case 0x4: sprintf(retStr, "SRIX512"); break; case 0x6: sprintf(retStr, "SRI512"); break; case 0x7: sprintf(retStr, "SRI4K"); break; case 0xC: sprintf(retStr, "SRT512"); break; default : sprintf(retStr, "Unknown"); break; } return retStr; } static char *get_st_lock_info(uint8_t model, uint8_t *lockbytes, uint8_t blk) { static char str[16]; char *s = str; sprintf(s, " "); if (blk > 15) { return s; } uint8_t mask = 0; switch (model) { case 0x0: // SRIX4K special case 0x3: // SRIx4K case 0x7: { // SRI4K //only need data[3] switch (blk) { case 7: case 8: mask = 0x01; break; case 9: mask = 0x02; break; case 10: mask = 0x04; break; case 11: mask = 0x08; break; case 12: mask = 0x10; break; case 13: mask = 0x20; break; case 14: mask = 0x40; break; case 15: mask = 0x80; break; default: return s; } if ((lockbytes[1] & mask) == 0) { sprintf(s, _RED_("1")); } return s; } case 0x4: // SRIX512 case 0x6: // SRI512 case 0xC: { // SRT512 //need data[2] and data[3] uint8_t b = 1; switch (blk) { case 0: mask = 0x01; break; case 1: mask = 0x02; break; case 2: mask = 0x04; break; case 3: mask = 0x08; break; case 4: mask = 0x10; break; case 5: mask = 0x20; break; case 6: mask = 0x40; break; case 7: mask = 0x80; break; case 8: mask = 0x01; b = 0; break; case 9: mask = 0x02; b = 0; break; case 10: mask = 0x04; b = 0; break; case 11: mask = 0x08; b = 0; break; case 12: mask = 0x10; b = 0; break; case 13: mask = 0x20; b = 0; break; case 14: mask = 0x40; b = 0; break; case 15: mask = 0x80; b = 0; break; } if ((lockbytes[b] & mask) == 0) { sprintf(s, _RED_("1")); } return s; } case 0x2: { // SR176 //need data[2] switch (blk) { case 0: case 1: mask = 0x1; break; case 2: case 3: mask = 0x2; break; case 4: case 5: mask = 0x4; break; case 6: case 7: mask = 0x8; break; case 8: case 9: mask = 0x10; break; case 10: case 11: mask = 0x20; break; case 12: case 13: mask = 0x40; break; case 14: case 15: mask = 0x80; break; } // iceman: this is opposite! need sample to test with. if ((lockbytes[0] & mask)) { sprintf(s, _RED_("1")); } return s; } default: break; } return s; } static uint8_t get_st_chipid(uint8_t *uid) { return uid[5] >> 2; } static uint8_t get_st_cardsize(uint8_t *uid) { uint8_t chipid = get_st_chipid(uid); switch (chipid) { case 0x0: case 0x3: case 0x7: return 1; case 0x4: case 0x6: case 0xC: return 2; default: return 0; } return 0; } // print UID info from SRx chips (ST Microelectronics) static void print_st_general_info(uint8_t *data, uint8_t len) { //uid = first 8 bytes in data uint8_t mfgid = data[6]; uint8_t chipid = get_st_chipid(data); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, " UID: " _GREEN_("%s"), sprint_hex(SwapEndian64(data, 8, 8), len)); PrintAndLogEx(SUCCESS, " MFG: %02X, " _YELLOW_("%s"), mfgid, getTagInfo(mfgid)); PrintAndLogEx(SUCCESS, "Chip: %02X, " _YELLOW_("%s"), chipid, get_st_chip_model(chipid)); } // print UID info from ASK CT chips static void print_ct_general_info(void *vcard) { iso14b_cts_card_select_t card; memcpy(&card, (iso14b_cts_card_select_t *)vcard, sizeof(iso14b_cts_card_select_t)); uint32_t uid32 = (card.uid[0] |card.uid[1] << 8 |card.uid[2] << 16 | card.uid[3] << 24); PrintAndLogEx(SUCCESS, "ASK C-Ticket"); PrintAndLogEx(SUCCESS, " UID: " _GREEN_("%s") " ( " _YELLOW_("%010u") " )", sprint_hex(card.uid, sizeof(card.uid)), uid32); PrintAndLogEx(SUCCESS, " Product Code: %02X", card.pc); PrintAndLogEx(SUCCESS, " Facility Code: %02X", card.fc); PrintAndLogEx(NORMAL, ""); } // iceman, calypso? // 05 00 00 = find one tag in field // 1d xx xx xx xx 00 08 01 00 = attrib xx=UID (resp 10 [f9 e0]) // 0200a40400 (resp 02 67 00 [29 5b]) // 0200a4040c07a0000002480300 (resp 02 67 00 [29 5b]) // 0200a4040c07a0000002480200 (resp 02 67 00 [29 5b]) // 0200a4040006a0000000010100 (resp 02 6a 82 [4b 4c]) // 0200a4040c09d27600002545500200 (resp 02 67 00 [29 5b]) // 0200a404000cd2760001354b414e4d30310000 (resp 02 6a 82 [4b 4c]) // 0200a404000ca000000063504b43532d313500 (resp 02 6a 82 [4b 4c]) // 0200a4040010a000000018300301000000000000000000 (resp 02 6a 82 [4b 4c]) // 14b get and print Full Info (as much as we know) static bool HF14B_Std_Info(bool verbose) { bool is_success = false; // 14b get and print UID only (general info) clearCommandBuffer(); PacketResponseNG resp; SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_DISCONNECT, 0, 0, NULL, 0); if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { if (verbose) PrintAndLogEx(WARNING, "command execution timeout"); switch_off_field_14b(); return is_success; } iso14b_card_select_t card; memcpy(&card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t)); int status = resp.oldarg[0]; switch (status) { case 0: PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, " UID : " _GREEN_("%s"), sprint_hex(card.uid, card.uidlen)); PrintAndLogEx(SUCCESS, " ATQB : %s", sprint_hex(card.atqb, sizeof(card.atqb))); PrintAndLogEx(SUCCESS, " CHIPID : %02X", card.chipid); print_atqb_resp(card.atqb, card.cid); is_success = true; break; case -1: if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ATTRIB fail"); break; case -2: if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 CRC fail"); break; default: if (verbose) PrintAndLogEx(FAILED, "ISO 14443-b card select failed"); break; } return is_success; } // SRx get and print full info (needs more info...) static bool HF14B_ST_Info(bool verbose) { clearCommandBuffer(); PacketResponseNG resp; SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0, NULL, 0); if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { if (verbose) PrintAndLogEx(WARNING, "command execution timeout"); return false; } iso14b_card_select_t card; memcpy(&card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t)); int status = resp.oldarg[0]; if (status < 0) return false; print_st_general_info(card.uid, card.uidlen); return true; } // menu command to get and print all info known about any known 14b tag static int CmdHF14Binfo(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf 14b info", "Tag information for ISO/IEC 14443 type B based tags", "hf 14b info\n" ); void *argtable[] = { arg_param_begin, arg_lit0("v", "verbose", "verbose"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); bool verbose = arg_get_lit(ctx, 1); CLIParserFree(ctx); return infoHF14B(verbose); } static bool HF14B_st_reader(bool verbose) { bool is_success = false; // SRx get and print general info about SRx chip from UID clearCommandBuffer(); PacketResponseNG resp; SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0, NULL, 0); if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { if (verbose) PrintAndLogEx(WARNING, "command execution timeout"); return is_success; } iso14b_card_select_t card; memcpy(&card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t)); int status = resp.oldarg[0]; switch (status) { case 0: print_st_general_info(card.uid, card.uidlen); is_success = true; break; case -1: if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ST ATTRIB fail"); break; case -2: if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ST CRC fail"); break; case -3: if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ST random chip id fail"); break; default: if (verbose) PrintAndLogEx(FAILED, "ISO 14443-b ST card select SRx failed"); break; } return is_success; } static bool HF14B_std_reader(bool verbose) { bool is_success = false; // 14b get and print UID only (general info) clearCommandBuffer(); PacketResponseNG resp; SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_DISCONNECT, 0, 0, NULL, 0); if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT) == false) { if (verbose) PrintAndLogEx(WARNING, "command execution timeout"); return false; } int status = resp.oldarg[0]; switch (status) { case 0: { iso14b_card_select_t card; memcpy(&card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t)); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, " UID : " _GREEN_("%s"), sprint_hex(card.uid, card.uidlen)); PrintAndLogEx(SUCCESS, " ATQB : %s", sprint_hex(card.atqb, sizeof(card.atqb))); PrintAndLogEx(SUCCESS, " CHIPID : %02X", card.chipid); print_atqb_resp(card.atqb, card.cid); is_success = true; break; } case -1: { if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ATTRIB fail"); break; } case -2: { if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 CRC fail"); break; } default: { if (verbose) PrintAndLogEx(FAILED, "ISO 14443-b card select failed"); break; } } return is_success; } static bool HF14B_ask_ct_reader(bool verbose) { bool is_success = false; // 14b get and print UID only (general info) clearCommandBuffer(); PacketResponseNG resp; SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_CTS | ISO14B_DISCONNECT, 0, 0, NULL, 0); if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT) == false) { if (verbose) PrintAndLogEx(WARNING, "command execution timeout"); return false; } int status = resp.oldarg[0]; switch (status) { case 0: { print_ct_general_info(resp.data.asBytes); is_success = true; break; } case -1: { if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 CTS wrong length"); break; } case -2: { if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 CTS CRC fail"); break; } default: { if (verbose) PrintAndLogEx(FAILED, "ISO 14443-b CTS card select failed"); break; } } return is_success; } // test for other 14b type tags (mimic another reader - don't have tags to identify) static bool HF14B_other_reader(bool verbose) { uint8_t data[] = {0x00, 0x0b, 0x3f, 0x80}; uint8_t datalen = 4; // 14b get and print UID only (general info) uint32_t flags = ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_RAW | ISO14B_APPEND_CRC; clearCommandBuffer(); PacketResponseNG resp; SendCommandMIX(CMD_HF_ISO14443B_COMMAND, flags, datalen, 0, data, datalen); if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { if (verbose) PrintAndLogEx(WARNING, "command execution timeout"); switch_off_field_14b(); return false; } int status = resp.oldarg[0]; PrintAndLogEx(DEBUG, "status %d", status); if (status == 0) { PrintAndLogEx(SUCCESS, "\n14443-3b tag found:"); PrintAndLogEx(SUCCESS, "unknown tag type answered to a 0x000b3f80 command ans:"); switch_off_field_14b(); return true; } else if (status > 0) { PrintAndLogEx(SUCCESS, "\n14443-3b tag found:"); PrintAndLogEx(SUCCESS, "unknown tag type answered to a 0x000b3f80 command ans:"); PrintAndLogEx(SUCCESS, "%s", sprint_hex(resp.data.asBytes, status)); switch_off_field_14b(); return true; } data[0] = ISO14443B_AUTHENTICATE; clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443B_COMMAND, flags, 1, 0, data, 1); if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { if (verbose) PrintAndLogEx(WARNING, "command execution timeout"); switch_off_field_14b(); return false; } status = resp.oldarg[0]; PrintAndLogEx(DEBUG, "status %d", status); if (status == 0) { PrintAndLogEx(SUCCESS, "\n14443-3b tag found:"); PrintAndLogEx(SUCCESS, "Unknown tag type answered to a 0x0A command ans:"); switch_off_field_14b(); return true; } else if (status > 0) { PrintAndLogEx(SUCCESS, "\n14443-3b tag found:"); PrintAndLogEx(SUCCESS, "unknown tag type answered to a 0x0A command ans:"); PrintAndLogEx(SUCCESS, "%s", sprint_hex(resp.data.asBytes, status)); switch_off_field_14b(); return true; } data[0] = ISO14443B_RESET; clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443B_COMMAND, flags, 1, 0, data, 1); if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { if (verbose) PrintAndLogEx(WARNING, "command execution timeout"); switch_off_field_14b(); return false; } status = resp.oldarg[0]; PrintAndLogEx(DEBUG, "status %d", status); if (status == 0) { PrintAndLogEx(SUCCESS, "\n14443-3b tag found:"); PrintAndLogEx(SUCCESS, "Unknown tag type answered to a 0x0C command ans:"); switch_off_field_14b(); return true; } else if (status > 0) { PrintAndLogEx(SUCCESS, "\n14443-3b tag found:"); PrintAndLogEx(SUCCESS, "unknown tag type answered to a 0x0C command ans:"); PrintAndLogEx(SUCCESS, "%s", sprint_hex(resp.data.asBytes, status)); switch_off_field_14b(); return true; } switch_off_field_14b(); return false; } // menu command to get and print general info about all known 14b chips static int CmdHF14BReader(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf 14b reader", "Act as a 14443B reader to identify a tag", "hf 14b reader\n" ); void *argtable[] = { arg_param_begin, arg_lit0("v", "verbose", "verbose"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); bool verbose = arg_get_lit(ctx, 1); CLIParserFree(ctx); return readHF14B(verbose); } /* New command to read the contents of a SRI512|SRIX4K tag * SRI* tags are ISO14443-B modulated memory tags, * this command just dumps the contents of the memory/ */ static int CmdHF14BReadSri(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf 14b sriread", "Read contents of a SRI512 | SRIX4K tag", "hf 14b sriread\n" ); void *argtable[] = { arg_param_begin, arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); CLIParserFree(ctx); iso14b_card_select_t card; if (get_14b_UID(&card) == false) { PrintAndLogEx(WARNING, "no tag found"); return PM3_SUCCESS; } if (card.uidlen != 8) { PrintAndLogEx(FAILED, "current dump command only work with SRI4K / SRI512 tags"); return PM3_SUCCESS; } // detect cardsize // 1 = 4096 // 2 = 512 uint8_t cardtype = get_st_cardsize(card.uid); uint8_t blocks = (cardtype == 1) ? 0x7F : 0x0F; clearCommandBuffer(); SendCommandMIX(CMD_HF_SRI_READ, blocks, 0, 0, NULL, 0); // iceman: should download read data and print in client. return PM3_SUCCESS; } // New command to write a SRI512/SRIX4K tag. static int CmdHF14BWriteSri(const char *Cmd) { /* * For SRIX4K blocks 00 - 7F * hf 14b raw -c -k 09 $srix4kwblock $srix4kwdata * * For SR512 blocks 00 - 0F * hf 14b raw -c -k 09 $sr512wblock $sr512wdata * * Special block FF = otp_lock_reg block. * Data len 4 bytes- */ char cmdp = tolower(param_getchar(Cmd, 0)); uint8_t blockno = -1; uint8_t data[4] = {0x00}; bool isSrix4k = true; char str[30]; memset(str, 0x00, sizeof(str)); if (strlen(Cmd) < 1 || cmdp == 'h') return usage_hf_14b_write_srx(); if (cmdp == '2') isSrix4k = false; //blockno = param_get8(Cmd, 1); if (param_gethex(Cmd, 1, &blockno, 2)) { PrintAndLogEx(WARNING, "block number must include 2 HEX symbols"); return 0; } if (isSrix4k) { if (blockno > 0x7f && blockno != 0xff) { PrintAndLogEx(FAILED, "block number out of range"); return PM3_ESOFT; } } else { if (blockno > 0x0f && blockno != 0xff) { PrintAndLogEx(FAILED, "block number out of range"); return PM3_ESOFT; } } if (param_gethex(Cmd, 2, data, 8)) { PrintAndLogEx(WARNING, "data must include 8 HEX symbols"); return PM3_ESOFT; } if (blockno == 0xff) { PrintAndLogEx(SUCCESS, "[%s] Write special block %02X [ " _YELLOW_("%s")" ]", (isSrix4k) ? "SRIX4K" : "SRI512", blockno, sprint_hex(data, 4) ); } else { PrintAndLogEx(SUCCESS, "[%s] Write block %02X [ " _YELLOW_("%s")" ]", (isSrix4k) ? "SRIX4K" : "SRI512", blockno, sprint_hex(data, 4) ); } sprintf(str, "--ss -c %02x %02x %02x %02x %02x %02x", ISO14443B_WRITE_BLK, blockno, data[0], data[1], data[2], data[3]); return CmdHF14BCmdRaw(str); } // need to write to file static int CmdHF14BDump(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf 14b dump", "This command dumps the contents of a ISO-14443-B tag and save it to file\n" "Tries to autodetect cardtype, memory size defaults to SRI4K", "hf 14b dump\n" "hf 14b dump -f myfilename\n" ); void *argtable[] = { arg_param_begin, arg_strx0("f", "file", "", "(optional) filename, if no UID will be used as filename"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int fnlen = 0; char filename[FILE_PATH_SIZE] = {0}; char *fptr = filename; CLIParamStrToBuf(arg_get_str(ctx, 1), (uint8_t*)filename, FILE_PATH_SIZE, &fnlen); CLIParserFree(ctx); iso14b_card_select_t card; if (get_14b_UID(&card) == false) { PrintAndLogEx(WARNING, "no tag found"); return PM3_SUCCESS; } if (card.uidlen != 8) { PrintAndLogEx(FAILED, "current dump command only work with SRI4K / SRI512 tags"); return PM3_SUCCESS; } // detect cardsize // 1 = 4096 // 2 = 512 uint8_t cardtype = get_st_cardsize(card.uid); uint8_t blocks = 0; uint16_t cardsize = 0; switch (cardtype) { case 2: cardsize = (512 / 8) + 4; blocks = 0x0F; break; case 1: default: cardsize = (4096 / 8) + 4; blocks = 0x7F; break; } if (fnlen < 1) { PrintAndLogEx(INFO, "using UID as filename"); fptr += sprintf(fptr, "hf-14b-"); FillFileNameByUID(fptr, SwapEndian64(card.uid, card.uidlen, 8), "-dump", card.uidlen); } uint8_t chipid = get_st_chipid(card.uid); PrintAndLogEx(SUCCESS, "found a " _GREEN_("%s") " tag", get_st_chip_model(chipid)); // detect blocksize from card :) PrintAndLogEx(INFO, "reading tag memory from UID " _GREEN_("%s"), sprint_hex_inrow(SwapEndian64(card.uid, card.uidlen, 8), card.uidlen)); uint8_t data[cardsize]; memset(data, 0, sizeof(data)); uint8_t *recv = NULL; int status = 0; PacketResponseNG resp; clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR, 0, 0, NULL, 0); //select if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, 2000)) { status = resp.oldarg[0]; if (status < 0) { PrintAndLogEx(FAILED, "failed to select arg0[%" PRId64 "] arg1 [%" PRId64 "]", resp.oldarg[0], resp.oldarg[1]); goto out; } } PrintAndLogEx(INFO, "." NOLF); uint8_t req[2] = {ISO14443B_READ_BLK}; int blocknum = 0; for (int retry = 0; retry < 5; retry++) { req[1] = blocknum; clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_APPEND_CRC | ISO14B_RAW, 2, 0, req, sizeof(req)); if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, 2000)) { status = resp.oldarg[0]; if (status < 0) { PrintAndLogEx(FAILED, "retrying one more time"); continue; } uint16_t len = (resp.oldarg[1] & 0xFFFF); recv = resp.data.asBytes; if (check_crc(CRC_14443_B, recv, len) == false) { PrintAndLogEx(FAILED, "crc fail, retrying one more time"); continue; } memcpy(data + (blocknum * 4), resp.data.asBytes, 4); // last read. if (blocknum == 0xFF) { break; } retry = 0; blocknum++; if (blocknum > blocks) { // read config block blocknum = 0xFF; } PrintAndLogEx(NORMAL, "." NOLF); fflush(stdout); } } PrintAndLogEx(NORMAL, ""); if (blocknum != 0xFF) { PrintAndLogEx(FAILED, "dump failed"); goto out; } PrintAndLogEx(DEBUG, "systemblock : %s", sprint_hex(data + (blocknum * 4), 4)); PrintAndLogEx(DEBUG, " otp lock : %02x %02x", data[(blocknum * 4)], data[(blocknum * 4) + 1]); PrintAndLogEx(INFO, " block# | data |lck| ascii"); PrintAndLogEx(INFO, "---------+--------------+---+----------"); for (int i = 0; i <= blocks; i++) { PrintAndLogEx(INFO, "%3d/0x%02X | %s | %s | %s", i, i, sprint_hex(data + (i * 4), 4), get_st_lock_info(chipid, data + (blocknum * 4), i), sprint_ascii(data + (i * 4), 4) ); } PrintAndLogEx(INFO, "%3d/0x%02X | %s | %s | %s", 0xFF, 0xFF, sprint_hex(data + (0xFF * 4), 4), get_st_lock_info(chipid, data + (blocknum * 4), 0xFF), sprint_ascii(data + (0xFF * 4), 4) ); PrintAndLogEx(INFO, "---------+--------------+---+----------"); PrintAndLogEx(NORMAL, ""); // save to file size_t datalen = (blocks + 1) * 4; saveFileEML(filename, data, datalen, 4); saveFile(filename, ".bin", data, datalen); // JSON? out: return switch_off_field_14b(); } /* static uint32_t srix4kEncode(uint32_t value) { // vv = value // pp = position // vv vv vv pp // 4 bytes : 00 1A 20 01 // only the lower crumbs. uint8_t block = (value & 0xFF); uint8_t i = 0; uint8_t valuebytes[] = {0, 0, 0}; num_to_bytes(value, 3, valuebytes); // Scrambled part // Crumb swapping of value. uint8_t temp[] = {0, 0}; temp[0] = (CRUMB(value, 22) << 4 | CRUMB(value, 14) << 2 | CRUMB(value, 6)) << 4; temp[0] |= CRUMB(value, 20) << 4 | CRUMB(value, 12) << 2 | CRUMB(value, 4); temp[1] = (CRUMB(value, 18) << 4 | CRUMB(value, 10) << 2 | CRUMB(value, 2)) << 4; temp[1] |= CRUMB(value, 16) << 4 | CRUMB(value, 8) << 2 | CRUMB(value, 0); // chksum part uint32_t chksum = 0xFF - block; // chksum is reduced by each nibbles of value. for (i = 0; i < 3; ++i) { chksum -= NIBBLE_HIGH(valuebytes[i]); chksum -= NIBBLE_LOW(valuebytes[i]); } // base4 conversion and left shift twice i = 3; uint8_t base4[] = {0, 0, 0, 0}; while (chksum != 0) { base4[i--] = (chksum % 4 << 2); chksum /= 4; } // merge scambled and chksum parts uint32_t encvalue = (NIBBLE_LOW(base4[0]) << 28) | (NIBBLE_HIGH(temp[0]) << 24) | (NIBBLE_LOW(base4[1]) << 20) | (NIBBLE_LOW(temp[0]) << 16) | (NIBBLE_LOW(base4[2]) << 12) | (NIBBLE_HIGH(temp[1]) << 8) | (NIBBLE_LOW(base4[3]) << 4) | NIBBLE_LOW(temp[1]); PrintAndLogEx(NORMAL, "ICE encoded | %08X -> %08X", value, encvalue); return encvalue; } static uint32_t srix4kDecode(uint32_t value) { switch (value) { case 0xC04F42C5: return 0x003139; case 0xC1484807: return 0x002943; case 0xC0C60848: return 0x001A20; } return 0; } static uint32_t srix4kDecodeCounter(uint32_t num) { uint32_t value = ~num; ++value; return value; } static uint32_t srix4kGetMagicbytes(uint64_t uid, uint32_t block6, uint32_t block18, uint32_t block19) { #define MASK 0xFFFFFFFF; uint32_t uid32 = uid & MASK; uint32_t counter = srix4kDecodeCounter(block6); uint32_t decodedBlock18 = srix4kDecode(block18); uint32_t decodedBlock19 = srix4kDecode(block19); uint32_t doubleBlock = (decodedBlock18 << 16 | decodedBlock19) + 1; uint32_t result = (uid32 * doubleBlock * counter) & MASK; PrintAndLogEx(SUCCESS, "Magic bytes | %08X", result); return result; } static int srix4kValid(const char *Cmd) { (void)Cmd; // Cmd is not used so far uint64_t uid = 0xD00202501A4532F9; uint32_t block6 = 0xFFFFFFFF; uint32_t block18 = 0xC04F42C5; uint32_t block19 = 0xC1484807; uint32_t block21 = 0xD1BCABA4; uint32_t test_b18 = 0x00313918; uint32_t test_b18_enc = srix4kEncode(test_b18); //uint32_t test_b18_dec = srix4kDecode(test_b18_enc); PrintAndLogEx(SUCCESS, "ENCODE & CHECKSUM | %08X -> %08X (%s)", test_b18, test_b18_enc, ""); uint32_t magic = srix4kGetMagicbytes(uid, block6, block18, block19); PrintAndLogEx(SUCCESS, "BLOCK 21 | %08X -> %08X (no XOR)", block21, magic ^ block21); return 0; } */ static int select_card_14443b_4(bool disconnect, iso14b_card_select_t *card) { PacketResponseNG resp; if (card) memset(card, 0, sizeof(iso14b_card_select_t)); switch_off_field_14b(); // Anticollision + SELECT STD card SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_STD, 0, 0, NULL, 0); if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT) == false) { PrintAndLogEx(INFO, "Trying 14B Select SRx"); // Anticollision + SELECT SR card SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR, 0, 0, NULL, 0); if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT) == false) { PrintAndLogEx(INFO, "Trying 14B Select CTS"); // Anticollision + SELECT ASK C-Ticket card SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_CTS, 0, 0, NULL, 0); if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT) == false) { PrintAndLogEx(ERR, "connection timeout"); switch_off_field_14b(); return PM3_ESOFT; } } } // check result int status = resp.oldarg[0]; if (status < 0) { PrintAndLogEx(ERR, "No card in field."); switch_off_field_14b(); return PM3_ESOFT; } apdu_frame_length = 0; // get frame length from ATS in card data structure iso14b_card_select_t *vcard = (iso14b_card_select_t *) resp.data.asBytes; // uint8_t fsci = vcard->atqb[1] & 0x0f; // if (fsci < ARRAYLEN(ats_fsc)) { // apdu_frame_length = ats_fsc[fsci]; // } if (card) { memcpy(card, vcard, sizeof(iso14b_card_select_t)); } if (disconnect) { switch_off_field_14b(); } return PM3_SUCCESS; } static int handle_14b_apdu(bool chainingin, uint8_t *datain, int datainlen, bool activateField, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, bool *chainingout) { *chainingout = false; if (activateField) { // select with no disconnect and set frameLength int selres = select_card_14443b_4(false, NULL); if (selres != PM3_SUCCESS) return selres; } uint16_t flags = 0; if (chainingin) flags = ISO14B_SEND_CHAINING; // "Command APDU" length should be 5+255+1, but javacard's APDU buffer might be smaller - 133 bytes // https://stackoverflow.com/questions/32994936/safe-max-java-card-apdu-data-command-and-respond-size // here length PM3_CMD_DATA_SIZE=512 if (datain) SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_APDU | flags, (datainlen & 0xFFFF), 0, datain, datainlen & 0xFFFF); else SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_APDU | flags, 0, 0, NULL, 0); PacketResponseNG resp; if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) { uint8_t *recv = resp.data.asBytes; int rlen = resp.oldarg[0]; uint8_t res = resp.oldarg[1]; int dlen = rlen - 2; if (dlen < 0) { dlen = 0; } *dataoutlen += dlen; if (maxdataoutlen && *dataoutlen > maxdataoutlen) { PrintAndLogEx(ERR, "APDU: Buffer too small(%d). Needs %d bytes", *dataoutlen, maxdataoutlen); return PM3_ESOFT; } // I-block ACK if ((res & 0xf2) == 0xa2) { *dataoutlen = 0; *chainingout = true; return PM3_SUCCESS; } if (rlen < 0) { PrintAndLogEx(ERR, "APDU: No APDU response."); return PM3_ESOFT; } // check apdu length if (rlen == 0 || rlen == 1) { PrintAndLogEx(ERR, "APDU: Small APDU response. Len=%d", rlen); return PM3_ESOFT; } memcpy(dataout, recv, dlen); // chaining if ((res & 0x10) != 0) { *chainingout = true; } } else { PrintAndLogEx(ERR, "APDU: Reply timeout."); return PM3_ETIMEOUT; } return PM3_SUCCESS; } static int exchange_14b_apdu(uint8_t *datain, int datainlen, bool activate_field, bool leave_signal_on, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) { *dataoutlen = 0; bool chaining = false; int res; // 3 byte here - 1b framing header, 2b crc16 if (apdu_in_framing_enable && ((apdu_frame_length && (datainlen > apdu_frame_length - 3)) || (datainlen > PM3_CMD_DATA_SIZE - 3))) { int clen = 0; bool v_activate_field = activate_field; do { int vlen = MIN(apdu_frame_length - 3, datainlen - clen); bool chainBlockNotLast = ((clen + vlen) < datainlen); *dataoutlen = 0; res = handle_14b_apdu(chainBlockNotLast, &datain[clen], vlen, v_activate_field, dataout, maxdataoutlen, dataoutlen, &chaining); if (res) { if (leave_signal_on == false) switch_off_field_14b(); return 200; } // TODO check this one... // check R-block ACK // *dataoutlen!=0. 'A && (!A || B)' is equivalent to 'A && B' if ((*dataoutlen == 0) && (*dataoutlen != 0 || chaining != chainBlockNotLast)) { if (leave_signal_on == false) { switch_off_field_14b(); } return 201; } clen += vlen; v_activate_field = false; if (*dataoutlen) { if (clen != datainlen) PrintAndLogEx(ERR, "APDU: I-block/R-block sequence error. Data len=%d, Sent=%d, Last packet len=%d", datainlen, clen, *dataoutlen); break; } } while (clen < datainlen); } else { res = handle_14b_apdu(false, datain, datainlen, activate_field, dataout, maxdataoutlen, dataoutlen, &chaining); if (res != PM3_SUCCESS) { if (leave_signal_on == false) { switch_off_field_14b(); } return res; } } while (chaining) { // I-block with chaining res = handle_14b_apdu(false, NULL, 0, false, &dataout[*dataoutlen], maxdataoutlen, dataoutlen, &chaining); if (res != PM3_SUCCESS) { if (leave_signal_on == false) { switch_off_field_14b(); } return 100; } } if (leave_signal_on == false) { switch_off_field_14b(); } return PM3_SUCCESS; } // ISO14443-4. 7. Half-duplex block transmission protocol static int CmdHF14BAPDU(const char *Cmd) { uint8_t data[PM3_CMD_DATA_SIZE]; int datalen = 0; uint8_t header[PM3_CMD_DATA_SIZE]; int headerlen = 0; bool activate_field = false; bool leave_signal_on = false; bool decode_TLV = false; bool decode_APDU = false; bool make_APDU = false; bool extended_APDU = false; int le = 0; CLIParserContext *ctx; CLIParserInit(&ctx, "hf 14b apdu", "Sends an ISO 7816-4 APDU via ISO 14443-4 block transmission protocol (T=CL). works with all apdu types from ISO 7816-4:2013", "hf 14b apdu -s 94a40800043f000002\n" "hf 14b apdu -sd 00A404000E325041592E5359532E444446303100 -> decode apdu\n" "hf 14b apdu -sm 00A40400 325041592E5359532E4444463031 -l 256 -> encode standard apdu\n" "hf 14b apdu -sm 00A40400 325041592E5359532E4444463031 -el 65536 -> encode extended apdu\n"); void *argtable[] = { arg_param_begin, arg_lit0("s", "select", "activate field and select card"), arg_lit0("k", "keep", "leave the signal field ON after receive response"), arg_lit0("t", "tlv", "executes TLV decoder if it possible"), arg_lit0("d", "decode", "decode apdu request if it possible"), arg_str0("m", "make", "", "make apdu with head from this field and data from data field. Must be 4 bytes length: "), arg_lit0("e", "extended", "make extended length apdu if `m` parameter included"), arg_int0("l", "le", "", "Le apdu parameter if `m` parameter included"), arg_strx1(NULL, NULL, "", "data if `m` parameter included"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, false); activate_field = arg_get_lit(ctx, 1); leave_signal_on = arg_get_lit(ctx, 2); decode_TLV = arg_get_lit(ctx, 3); decode_APDU = arg_get_lit(ctx, 4); CLIGetHexWithReturn(ctx, 5, header, &headerlen); make_APDU = headerlen > 0; if (make_APDU && headerlen != 4) { PrintAndLogEx(ERR, "header length must be 4 bytes instead of %d", headerlen); CLIParserFree(ctx); return PM3_EINVARG; } extended_APDU = arg_get_lit(ctx, 6); le = arg_get_int_def(ctx, 7, 0); if (make_APDU) { uint8_t apdudata[PM3_CMD_DATA_SIZE] = {0}; int apdudatalen = 0; CLIGetHexBLessWithReturn(ctx, 8, apdudata, &apdudatalen, 1 + 2); APDUStruct apdu; apdu.cla = header[0]; apdu.ins = header[1]; apdu.p1 = header[2]; apdu.p2 = header[3]; apdu.lc = apdudatalen; apdu.data = apdudata; apdu.extended_apdu = extended_APDU; apdu.le = le; if (APDUEncode(&apdu, data, &datalen)) { PrintAndLogEx(ERR, "can't make apdu with provided parameters."); CLIParserFree(ctx); return PM3_EINVARG; } } else { if (extended_APDU) { PrintAndLogEx(ERR, "make mode not set but here `e` option."); CLIParserFree(ctx); return PM3_EINVARG; } if (le > 0) { PrintAndLogEx(ERR, "make mode not set but here `l` option."); CLIParserFree(ctx); return PM3_EINVARG; } // len = data + PCB(1b) + CRC(2b) CLIGetHexBLessWithReturn(ctx, 8, data, &datalen, 1 + 2); } CLIParserFree(ctx); PrintAndLogEx(NORMAL, ">>>>[%s%s%s] %s", activate_field ? "sel" : "", leave_signal_on ? " keep" : "", decode_TLV ? " TLV" : "", sprint_hex(data, datalen) ); if (decode_APDU) { APDUStruct apdu; if (APDUDecode(data, datalen, &apdu) == 0) APDUPrint(apdu); else PrintAndLogEx(WARNING, "can't decode APDU."); } int res = exchange_14b_apdu(data, datalen, activate_field, leave_signal_on, data, PM3_CMD_DATA_SIZE, &datalen); if (res != PM3_SUCCESS) { return res; } PrintAndLogEx(NORMAL, "<<<< %s", sprint_hex(data, datalen)); PrintAndLogEx(SUCCESS, "APDU response: " _YELLOW_("%02x %02x") " - %s", data[datalen - 2], data[datalen - 1], GetAPDUCodeDescription(data[datalen - 2], data[datalen - 1])); // TLV decoder if (decode_TLV && datalen > 4) { TLVPrintFromBuffer(data, datalen - 2); } return PM3_SUCCESS; } static int CmdHF14BNdef(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf 14b ndef", "Print NFC Data Exchange Format (NDEF)", "hf 14b ndef" ); void *argtable[] = { arg_param_begin, arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); CLIParserFree(ctx); bool activate_field = true; bool keep_field_on = true; uint8_t response[PM3_CMD_DATA_SIZE]; int resplen = 0; // --------------- Select NDEF Tag application ---------------- uint8_t aSELECT_AID[80]; int aSELECT_AID_n = 0; param_gethex_to_eol("00a4040007d276000085010100", 0, aSELECT_AID, sizeof(aSELECT_AID), &aSELECT_AID_n); int res = exchange_14b_apdu(aSELECT_AID, aSELECT_AID_n, activate_field, keep_field_on, response, sizeof(response), &resplen); if (res) { goto out; } if (resplen < 2) { res = PM3_ESOFT; goto out; } uint16_t sw = get_sw(response, resplen); if (sw != 0x9000) { PrintAndLogEx(ERR, "Selecting NDEF aid failed (%04x - %s).", sw, GetAPDUCodeDescription(sw >> 8, sw & 0xff)); res = PM3_ESOFT; goto out; } activate_field = false; keep_field_on = true; // --------------- Send CC select ---------------- // --------------- Read binary ---------------- // --------------- NDEF file reading ---------------- uint8_t aSELECT_FILE_NDEF[30]; int aSELECT_FILE_NDEF_n = 0; param_gethex_to_eol("00a4000c020001", 0, aSELECT_FILE_NDEF, sizeof(aSELECT_FILE_NDEF), &aSELECT_FILE_NDEF_n); res = exchange_14b_apdu(aSELECT_FILE_NDEF, aSELECT_FILE_NDEF_n, activate_field, keep_field_on, response, sizeof(response), &resplen); if (res) goto out; sw = get_sw(response, resplen); if (sw != 0x9000) { PrintAndLogEx(ERR, "Selecting NDEF file failed (%04x - %s).", sw, GetAPDUCodeDescription(sw >> 8, sw & 0xff)); res = PM3_ESOFT; goto out; } // --------------- Read binary ---------------- uint8_t aREAD_NDEF[30]; int aREAD_NDEF_n = 0; param_gethex_to_eol("00b0000002", 0, aREAD_NDEF, sizeof(aREAD_NDEF), &aREAD_NDEF_n); res = exchange_14b_apdu(aREAD_NDEF, aREAD_NDEF_n, activate_field, keep_field_on, response, sizeof(response), &resplen); if (res) { goto out; } sw = get_sw(response, resplen); if (sw != 0x9000) { PrintAndLogEx(ERR, "reading NDEF file failed (%04x - %s).", sw, GetAPDUCodeDescription(sw >> 8, sw & 0xff)); res = PM3_ESOFT; goto out; } // take offset from response uint8_t offset = response[1]; // --------------- Read binary w offset ---------------- keep_field_on = false; aREAD_NDEF_n = 0; param_gethex_to_eol("00b00002", 0, aREAD_NDEF, sizeof(aREAD_NDEF), &aREAD_NDEF_n); aREAD_NDEF[4] = offset; res = exchange_14b_apdu(aREAD_NDEF, aREAD_NDEF_n, activate_field, keep_field_on, response, sizeof(response), &resplen); if (res) { goto out; } sw = get_sw(response, resplen); if (sw != 0x9000) { PrintAndLogEx(ERR, "reading NDEF file failed (%04x - %s).", sw, GetAPDUCodeDescription(sw >> 8, sw & 0xff)); res = PM3_ESOFT; goto out; } res = NDEFRecordsDecodeAndPrint(response + 2, resplen - 4); out: switch_off_field_14b(); return res; } static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "This help"}, {"apdu", CmdHF14BAPDU, IfPm3Iso14443b, "Send ISO 14443-4 APDU to tag"}, {"dump", CmdHF14BDump, IfPm3Iso14443b, "Read all memory pages of an ISO14443-B tag, save to file"}, {"info", CmdHF14Binfo, IfPm3Iso14443b, "Tag information"}, {"list", CmdHF14BList, AlwaysAvailable, "List ISO 14443B history"}, {"ndef", CmdHF14BNdef, IfPm3Iso14443b, "Read NDEF file on tag"}, {"raw", CmdHF14BCmdRaw, IfPm3Iso14443b, "Send raw hex data to tag"}, {"reader", CmdHF14BReader, IfPm3Iso14443b, "Act as a 14443B reader to identify a tag"}, {"sim", CmdHF14BSim, IfPm3Iso14443b, "Fake ISO 14443B tag"}, {"sniff", CmdHF14BSniff, IfPm3Iso14443b, "Eavesdrop ISO 14443B"}, {"sriread", CmdHF14BReadSri, IfPm3Iso14443b, "Read contents of a SRI512 | SRIX4K tag"}, {"sriwrite", CmdHF14BWriteSri, IfPm3Iso14443b, "Write data to a SRI512 | SRIX4K tag"}, // {"valid", srix4kValid, AlwaysAvailable, "srix4k checksum test"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return PM3_SUCCESS; } int CmdHF14B(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); } // get and print all info known about any known 14b tag int infoHF14B(bool verbose) { // try std 14b (atqb) if (HF14B_Std_Info(verbose)) return 1; // try ST 14b if (HF14B_ST_Info(verbose)) return 1; // try unknown 14b read commands (to be identified later) // could be read of calypso, CEPAS, moneo, or pico pass. if (verbose) PrintAndLogEx(FAILED, "no 14443-B tag found"); return 0; } // get and print general info about all known 14b chips int readHF14B(bool verbose) { // try std 14b (atqb) if (HF14B_std_reader(verbose)) return 1; // try ST Microelectronics 14b if (HF14B_st_reader(verbose)) return 1; // try ASK CT 14b if (HF14B_ask_ct_reader(verbose)) return 1; // try unknown 14b read commands (to be identified later) // could be read of calypso, CEPAS, moneo, or pico pass. if (HF14B_other_reader(verbose)) return 1; if (verbose) PrintAndLogEx(FAILED, "no 14443-B tag found"); return 0; }