Convert the few files with still Windows carriage returns

This commit is contained in:
Philippe Teuwen
2019-03-09 08:49:41 +01:00
parent d8788bb376
commit edc19f202a
18 changed files with 11284 additions and 11284 deletions

View File

@@ -1,4 +1,4 @@
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
// 2018 AntiCat
//

View File

@@ -1,4 +1,4 @@
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
// 2018 AntiCat
//

File diff suppressed because it is too large Load Diff

View File

@@ -1,28 +1,28 @@
//-----------------------------------------------------------------------------
// Merlok - June 2011
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
#ifndef __MIFARECMD_H
#define __MIFARECMD_H
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1/crapto1.h"
#include "mifareutil.h"
#include "common.h"
#include "crc.h"
#include "protocols.h"
#include "parity.h"
//-----------------------------------------------------------------------------
// Merlok - June 2011
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
#ifndef __MIFARECMD_H
#define __MIFARECMD_H
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1/crapto1.h"
#include "mifareutil.h"
#include "common.h"
#include "crc.h"
#include "protocols.h"
#include "parity.h"
#endif

View File

@@ -1,324 +1,324 @@
//-----------------------------------------------------------------------------
// Merlok - 2012
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support mifare classic sniffer.
//-----------------------------------------------------------------------------
#include "mifaresniff.h"
//static int sniffState = SNF_INIT;
static uint8_t sniffUIDType = 0;
static uint8_t sniffUID[10] = {0,0,0,0,0,0,0,0,0,0};
static uint8_t sniffATQA[2] = {0,0};
static uint8_t sniffSAK = 0;
static uint8_t sniffBuf[17];
static uint32_t timerData = 0;
//-----------------------------------------------------------------------------
// MIFARE sniffer.
//
// if no activity for 2sec, it sends the collected data to the client.
//-----------------------------------------------------------------------------
// "hf mf sniff"
void RAMFUNC SniffMifare(uint8_t param) {
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
// C(red) A(yellow) B(green)
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
// The command (reader -> tag) that we're receiving.
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
// The response (tag -> reader) that we're receiving.
uint8_t receivedResp[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedRespPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
bool ReaderIsActive = false;
bool TagIsActive = false;
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
// triggered == false -- to wait first for card
//bool triggered = !(param & 0x03);
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResp, receivedRespPar);
// Set up the demodulator for the reader -> tag commands
UartInit(receivedCmd, receivedCmdPar);
// Setup and start DMA.
// set transfer address and number of bytes. Start transfer.
if ( !FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE) ){
if (MF_DBGLEVEL > 1) Dbprintf("[!] FpgaSetupSscDma failed. Exiting");
return;
}
tUart* uart = GetUart();
tDemod* demod = GetDemod();
MfSniffInit();
uint32_t sniffCounter = 0;
// loop and listen
while (!BUTTON_PRESS()) {
WDT_HIT();
LED_A_ON();
/*
if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
// check if a transaction is completed (timeout after 2000ms).
// if yes, stop the DMA transfer and send what we have so far to the client
if (BigBuf_get_traceLen()) {
MfSniffSend();
// Reset everything - we missed some sniffed data anyway while the DMA was stopped
sniffCounter = 0;
dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
data = dmaBuf;
maxDataLen = 0;
ReaderIsActive = false;
TagIsActive = false;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
}
}
*/
// number of bytes we have processed so far
int register readBufDataP = data - dmaBuf;
// number of bytes already transferred
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred
dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
else
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
// test for length of buffer
if (dataLen > maxDataLen) { // we are more behind than ever...
maxDataLen = dataLen;
if (dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("[!] blew circular buffer! | datalen %u", dataLen);
break;
}
}
if (dataLen < 1) continue;
// primary buffer was stopped ( <-- we lost data!
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t)dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
Dbprintf("[-] RxEmpty ERROR | data length %d", dataLen); // temporary
}
// secondary buffer sets as primary, secondary buffer was stopped
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t)dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
LED_A_OFF();
// Need two samples to feed Miller and Manchester-Decoder
if (sniffCounter & 0x01) {
// no need to try decoding tag data if the reader is sending
if (!TagIsActive) {
uint8_t readerbyte = (previous_data & 0xF0) | (*data >> 4);
if (MillerDecoding(readerbyte, (sniffCounter-1)*4)) {
LogTrace(receivedCmd, uart->len, 0, 0, NULL, true);
DemodReset();
UartReset();
}
ReaderIsActive = (uart->state != STATE_UNSYNCD);
}
// no need to try decoding tag data if the reader is sending
if (!ReaderIsActive) {
uint8_t tagbyte = (previous_data << 4) | (*data & 0x0F);
if (ManchesterDecoding(tagbyte, 0, (sniffCounter-1)*4)) {
LogTrace(receivedResp, demod->len, 0, 0, NULL, false);
DemodReset();
UartReset();
}
TagIsActive = (demod->state != DEMOD_UNSYNCD);
}
}
previous_data = *data;
sniffCounter++;
data++;
if (data == dmaBuf + DMA_BUFFER_SIZE)
data = dmaBuf;
} // main cycle
MfSniffEnd();
switch_off();
}
void MfSniffInit(void){
memset(sniffUID, 0x00, sizeof(sniffUID));
memset(sniffATQA, 0x00, sizeof(sniffATQA));
memset(sniffBuf, 0x00, sizeof(sniffBuf));
sniffSAK = 0;
sniffUIDType = SNF_UID_4;
timerData = 0;
}
void MfSniffEnd(void){
LED_B_ON();
cmd_send(CMD_ACK,0,0,0,0,0);
LED_B_OFF();
}
/*
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader) {
// reset on 7-Bit commands from reader
if (reader && (len == 1) && (bitCnt == 7)) {
sniffState = SNF_INIT;
}
switch (sniffState) {
case SNF_INIT:{
// REQA,WUPA or MAGICWUP from reader
if ((len == 1) && (reader) && (bitCnt == 7) ) {
MfSniffInit();
sniffState = (data[0] == MIFARE_MAGICWUPC1) ? SNF_MAGIC_WUPC2 : SNF_ATQA;
}
break;
}
case SNF_MAGIC_WUPC2: {
if ((len == 1) && (reader) && (data[0] == MIFARE_MAGICWUPC2) ) {
sniffState = SNF_CARD_IDLE;
}
break;
}
case SNF_ATQA:{
// ATQA from tag
if ((!reader) && (len == 2)) {
sniffATQA[0] = data[0];
sniffATQA[1] = data[1];
sniffState = SNF_UID;
}
break;
}
case SNF_UID: {
if ( !reader ) break;
if ( len != 9 ) break;
if ( !CheckCrc14443(CRC_14443_A, data, 9)) break;
if ( data[1] != 0x70 ) break;
Dbprintf("[!] UID | %x", data[0]);
if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT)) {
// UID_4 - select 4 Byte UID from reader
memcpy(sniffUID, data+2, 4);
sniffUIDType = SNF_UID_4;
sniffState = SNF_SAK;
} else if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2)) {
// UID_7 - Select 2nd part of 7 Byte UID
// get rid of 0x88
sniffUID[0] = sniffUID[1];
sniffUID[1] = sniffUID[2];
sniffUID[2] = sniffUID[3];
//new uid bytes
memcpy(sniffUID+3, data+2, 4);
sniffUIDType = SNF_UID_7;
sniffState = SNF_SAK;
} else if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3)) {
// UID_10 - Select 3nd part of 10 Byte UID
// 3+3+4 = 10.
// get ride of previous 0x88
sniffUID[3] = sniffUID[4];
sniffUID[4] = sniffUID[5];
sniffUID[5] = sniffUID[6];
// new uid bytes
memcpy(sniffUID+6, data+2, 4);
sniffUIDType = SNF_UID_10;
sniffState = SNF_SAK;
}
break;
}
case SNF_SAK:{
// SAK from card?
if ((!reader) && (len == 3) && (CheckCrc14443(CRC_14443_A, data, 3))) {
sniffSAK = data[0];
// CL2 UID part to be expected
if (( sniffSAK == 0x04) && (sniffUIDType == SNF_UID_4)) {
sniffState = SNF_UID;
// CL3 UID part to be expected
} else if ((sniffSAK == 0x04) && (sniffUIDType == SNF_UID_7)) {
sniffState = SNF_UID;
} else {
// select completed
sniffState = SNF_CARD_IDLE;
}
}
break;
}
case SNF_CARD_IDLE:{ // trace the card select sequence
sniffBuf[0] = 0xFF;
sniffBuf[1] = 0xFF;
memcpy(sniffBuf + 2, sniffUID, sizeof(sniffUID));
memcpy(sniffBuf + 12, sniffATQA, sizeof(sniffATQA));
sniffBuf[14] = sniffSAK;
sniffBuf[15] = 0xFF;
sniffBuf[16] = 0xFF;
LogTrace(sniffBuf, sizeof(sniffBuf), 0, 0, NULL, true);
sniffState = SNF_CARD_CMD;
} // intentionally no break;
case SNF_CARD_CMD:{
LogTrace(data, len, 0, 0, NULL, reader);
timerData = GetTickCount();
break;
}
default:
sniffState = SNF_INIT;
break;
}
return false;
}
*/
void RAMFUNC MfSniffSend() {
uint16_t tracelen = BigBuf_get_traceLen();
uint16_t chunksize = 0;
int packlen = tracelen; // total number of bytes to send
uint8_t *data = BigBuf_get_addr();
while (packlen > 0) {
LED_B_ON();
chunksize = MIN(USB_CMD_DATA_SIZE, packlen); // chunk size 512
cmd_send(CMD_ACK, 1, tracelen, chunksize, data + tracelen - packlen, chunksize);
packlen -= chunksize;
LED_B_OFF();
}
LED_B_ON();
cmd_send(CMD_ACK, 2, 0, 0, 0, 0); // 2 == data transfer finished.
LED_B_OFF();
//-----------------------------------------------------------------------------
// Merlok - 2012
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support mifare classic sniffer.
//-----------------------------------------------------------------------------
#include "mifaresniff.h"
//static int sniffState = SNF_INIT;
static uint8_t sniffUIDType = 0;
static uint8_t sniffUID[10] = {0,0,0,0,0,0,0,0,0,0};
static uint8_t sniffATQA[2] = {0,0};
static uint8_t sniffSAK = 0;
static uint8_t sniffBuf[17];
static uint32_t timerData = 0;
//-----------------------------------------------------------------------------
// MIFARE sniffer.
//
// if no activity for 2sec, it sends the collected data to the client.
//-----------------------------------------------------------------------------
// "hf mf sniff"
void RAMFUNC SniffMifare(uint8_t param) {
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
// C(red) A(yellow) B(green)
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
// The command (reader -> tag) that we're receiving.
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
// The response (tag -> reader) that we're receiving.
uint8_t receivedResp[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedRespPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
bool ReaderIsActive = false;
bool TagIsActive = false;
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
// triggered == false -- to wait first for card
//bool triggered = !(param & 0x03);
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResp, receivedRespPar);
// Set up the demodulator for the reader -> tag commands
UartInit(receivedCmd, receivedCmdPar);
// Setup and start DMA.
// set transfer address and number of bytes. Start transfer.
if ( !FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE) ){
if (MF_DBGLEVEL > 1) Dbprintf("[!] FpgaSetupSscDma failed. Exiting");
return;
}
tUart* uart = GetUart();
tDemod* demod = GetDemod();
MfSniffInit();
uint32_t sniffCounter = 0;
// loop and listen
while (!BUTTON_PRESS()) {
WDT_HIT();
LED_A_ON();
/*
if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
// check if a transaction is completed (timeout after 2000ms).
// if yes, stop the DMA transfer and send what we have so far to the client
if (BigBuf_get_traceLen()) {
MfSniffSend();
// Reset everything - we missed some sniffed data anyway while the DMA was stopped
sniffCounter = 0;
dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
data = dmaBuf;
maxDataLen = 0;
ReaderIsActive = false;
TagIsActive = false;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
}
}
*/
// number of bytes we have processed so far
int register readBufDataP = data - dmaBuf;
// number of bytes already transferred
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred
dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
else
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
// test for length of buffer
if (dataLen > maxDataLen) { // we are more behind than ever...
maxDataLen = dataLen;
if (dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("[!] blew circular buffer! | datalen %u", dataLen);
break;
}
}
if (dataLen < 1) continue;
// primary buffer was stopped ( <-- we lost data!
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t)dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
Dbprintf("[-] RxEmpty ERROR | data length %d", dataLen); // temporary
}
// secondary buffer sets as primary, secondary buffer was stopped
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t)dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
LED_A_OFF();
// Need two samples to feed Miller and Manchester-Decoder
if (sniffCounter & 0x01) {
// no need to try decoding tag data if the reader is sending
if (!TagIsActive) {
uint8_t readerbyte = (previous_data & 0xF0) | (*data >> 4);
if (MillerDecoding(readerbyte, (sniffCounter-1)*4)) {
LogTrace(receivedCmd, uart->len, 0, 0, NULL, true);
DemodReset();
UartReset();
}
ReaderIsActive = (uart->state != STATE_UNSYNCD);
}
// no need to try decoding tag data if the reader is sending
if (!ReaderIsActive) {
uint8_t tagbyte = (previous_data << 4) | (*data & 0x0F);
if (ManchesterDecoding(tagbyte, 0, (sniffCounter-1)*4)) {
LogTrace(receivedResp, demod->len, 0, 0, NULL, false);
DemodReset();
UartReset();
}
TagIsActive = (demod->state != DEMOD_UNSYNCD);
}
}
previous_data = *data;
sniffCounter++;
data++;
if (data == dmaBuf + DMA_BUFFER_SIZE)
data = dmaBuf;
} // main cycle
MfSniffEnd();
switch_off();
}
void MfSniffInit(void){
memset(sniffUID, 0x00, sizeof(sniffUID));
memset(sniffATQA, 0x00, sizeof(sniffATQA));
memset(sniffBuf, 0x00, sizeof(sniffBuf));
sniffSAK = 0;
sniffUIDType = SNF_UID_4;
timerData = 0;
}
void MfSniffEnd(void){
LED_B_ON();
cmd_send(CMD_ACK,0,0,0,0,0);
LED_B_OFF();
}
/*
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader) {
// reset on 7-Bit commands from reader
if (reader && (len == 1) && (bitCnt == 7)) {
sniffState = SNF_INIT;
}
switch (sniffState) {
case SNF_INIT:{
// REQA,WUPA or MAGICWUP from reader
if ((len == 1) && (reader) && (bitCnt == 7) ) {
MfSniffInit();
sniffState = (data[0] == MIFARE_MAGICWUPC1) ? SNF_MAGIC_WUPC2 : SNF_ATQA;
}
break;
}
case SNF_MAGIC_WUPC2: {
if ((len == 1) && (reader) && (data[0] == MIFARE_MAGICWUPC2) ) {
sniffState = SNF_CARD_IDLE;
}
break;
}
case SNF_ATQA:{
// ATQA from tag
if ((!reader) && (len == 2)) {
sniffATQA[0] = data[0];
sniffATQA[1] = data[1];
sniffState = SNF_UID;
}
break;
}
case SNF_UID: {
if ( !reader ) break;
if ( len != 9 ) break;
if ( !CheckCrc14443(CRC_14443_A, data, 9)) break;
if ( data[1] != 0x70 ) break;
Dbprintf("[!] UID | %x", data[0]);
if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT)) {
// UID_4 - select 4 Byte UID from reader
memcpy(sniffUID, data+2, 4);
sniffUIDType = SNF_UID_4;
sniffState = SNF_SAK;
} else if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2)) {
// UID_7 - Select 2nd part of 7 Byte UID
// get rid of 0x88
sniffUID[0] = sniffUID[1];
sniffUID[1] = sniffUID[2];
sniffUID[2] = sniffUID[3];
//new uid bytes
memcpy(sniffUID+3, data+2, 4);
sniffUIDType = SNF_UID_7;
sniffState = SNF_SAK;
} else if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3)) {
// UID_10 - Select 3nd part of 10 Byte UID
// 3+3+4 = 10.
// get ride of previous 0x88
sniffUID[3] = sniffUID[4];
sniffUID[4] = sniffUID[5];
sniffUID[5] = sniffUID[6];
// new uid bytes
memcpy(sniffUID+6, data+2, 4);
sniffUIDType = SNF_UID_10;
sniffState = SNF_SAK;
}
break;
}
case SNF_SAK:{
// SAK from card?
if ((!reader) && (len == 3) && (CheckCrc14443(CRC_14443_A, data, 3))) {
sniffSAK = data[0];
// CL2 UID part to be expected
if (( sniffSAK == 0x04) && (sniffUIDType == SNF_UID_4)) {
sniffState = SNF_UID;
// CL3 UID part to be expected
} else if ((sniffSAK == 0x04) && (sniffUIDType == SNF_UID_7)) {
sniffState = SNF_UID;
} else {
// select completed
sniffState = SNF_CARD_IDLE;
}
}
break;
}
case SNF_CARD_IDLE:{ // trace the card select sequence
sniffBuf[0] = 0xFF;
sniffBuf[1] = 0xFF;
memcpy(sniffBuf + 2, sniffUID, sizeof(sniffUID));
memcpy(sniffBuf + 12, sniffATQA, sizeof(sniffATQA));
sniffBuf[14] = sniffSAK;
sniffBuf[15] = 0xFF;
sniffBuf[16] = 0xFF;
LogTrace(sniffBuf, sizeof(sniffBuf), 0, 0, NULL, true);
sniffState = SNF_CARD_CMD;
} // intentionally no break;
case SNF_CARD_CMD:{
LogTrace(data, len, 0, 0, NULL, reader);
timerData = GetTickCount();
break;
}
default:
sniffState = SNF_INIT;
break;
}
return false;
}
*/
void RAMFUNC MfSniffSend() {
uint16_t tracelen = BigBuf_get_traceLen();
uint16_t chunksize = 0;
int packlen = tracelen; // total number of bytes to send
uint8_t *data = BigBuf_get_addr();
while (packlen > 0) {
LED_B_ON();
chunksize = MIN(USB_CMD_DATA_SIZE, packlen); // chunk size 512
cmd_send(CMD_ACK, 1, tracelen, chunksize, data + tracelen - packlen, chunksize);
packlen -= chunksize;
LED_B_OFF();
}
LED_B_ON();
cmd_send(CMD_ACK, 2, 0, 0, 0, 0); // 2 == data transfer finished.
LED_B_OFF();
}

View File

@@ -1,42 +1,42 @@
//-----------------------------------------------------------------------------
// Merlok - June 2012
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support mifare classic sniffer.
//-----------------------------------------------------------------------------
#ifndef __MIFARESNIFF_H
#define __MIFARESNIFF_H
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1/crapto1.h"
#include "mifareutil.h"
#include "common.h"
#define SNF_INIT 0
#define SNF_NO_FIELD 1
#define SNF_ATQA 2
#define SNF_UID 3
#define SNF_SAK 4
#define SNF_CARD_IDLE 5
#define SNF_CARD_CMD 6
#define SNF_MAGIC_WUPC2 7
#define SNF_UID_4 0
#define SNF_UID_7 0
#define SNF_UID_10 0
void MfSniffInit(void);
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader);
void RAMFUNC MfSniffSend(void);
void MfSniffEnd(void);
//-----------------------------------------------------------------------------
// Merlok - June 2012
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support mifare classic sniffer.
//-----------------------------------------------------------------------------
#ifndef __MIFARESNIFF_H
#define __MIFARESNIFF_H
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1/crapto1.h"
#include "mifareutil.h"
#include "common.h"
#define SNF_INIT 0
#define SNF_NO_FIELD 1
#define SNF_ATQA 2
#define SNF_UID 3
#define SNF_SAK 4
#define SNF_CARD_IDLE 5
#define SNF_CARD_CMD 6
#define SNF_MAGIC_WUPC2 7
#define SNF_UID_4 0
#define SNF_UID_7 0
#define SNF_UID_10 0
void MfSniffInit(void);
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader);
void RAMFUNC MfSniffSend(void);
void MfSniffEnd(void);
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,106 +1,106 @@
//-----------------------------------------------------------------------------
// Merlok, May 2011
// Many authors, that makes it possible
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// code for work with mifare cards.
//-----------------------------------------------------------------------------
#ifndef __MIFAREUTIL_H
#define __MIFAREUTIL_H
#include "proxmark3.h"
#include "apps.h"
#include "parity.h"
#include "util.h"
#include "string.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1/crapto1.h"
#include "des.h"
#include "random.h" // fast_prand, prand
// mifare authentication
#define CRYPT_NONE 0
#define CRYPT_ALL 1
#define CRYPT_REQUEST 2
#define AUTH_FIRST 0
#define AUTH_NESTED 2
#define AUTHENTICATION_TIMEOUT 848 // card times out 1ms after wrong authentication (according to NXP documentation)
#define PRE_AUTHENTICATION_LEADTIME 400 // some (non standard) cards need a pause after select before they are ready for first authentication
// mifare 4bit card answers
#define CARD_ACK 0x0A // 1010 - ACK
#define CARD_NACK_NA 0x04 // 0100 - NACK, not allowed (command not allowed)
#define CARD_NACK_TR 0x05 // 0101 - NACK, transmission error
//mifare emulator states
#define MFEMUL_NOFIELD 0
#define MFEMUL_IDLE 1
#define MFEMUL_SELECT1 2
#define MFEMUL_SELECT2 3
#define MFEMUL_SELECT3 4
#define MFEMUL_AUTH1 5
#define MFEMUL_AUTH2 6
#define MFEMUL_WORK 7
#define MFEMUL_WRITEBL2 8
#define MFEMUL_INTREG_INC 9
#define MFEMUL_INTREG_DEC 10
#define MFEMUL_INTREG_REST 11
#define MFEMUL_HALTED 12
#define cardSTATE_TO_IDLE() cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF();
//-----------------------------------------------------------------------------
// Merlok, May 2011
// Many authors, that makes it possible
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// code for work with mifare cards.
//-----------------------------------------------------------------------------
#ifndef __MIFAREUTIL_H
#define __MIFAREUTIL_H
#include "proxmark3.h"
#include "apps.h"
#include "parity.h"
#include "util.h"
#include "string.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1/crapto1.h"
#include "des.h"
#include "random.h" // fast_prand, prand
// mifare authentication
#define CRYPT_NONE 0
#define CRYPT_ALL 1
#define CRYPT_REQUEST 2
#define AUTH_FIRST 0
#define AUTH_NESTED 2
#define AUTHENTICATION_TIMEOUT 848 // card times out 1ms after wrong authentication (according to NXP documentation)
#define PRE_AUTHENTICATION_LEADTIME 400 // some (non standard) cards need a pause after select before they are ready for first authentication
// mifare 4bit card answers
#define CARD_ACK 0x0A // 1010 - ACK
#define CARD_NACK_NA 0x04 // 0100 - NACK, not allowed (command not allowed)
#define CARD_NACK_TR 0x05 // 0101 - NACK, transmission error
//mifare emulator states
#define MFEMUL_NOFIELD 0
#define MFEMUL_IDLE 1
#define MFEMUL_SELECT1 2
#define MFEMUL_SELECT2 3
#define MFEMUL_SELECT3 4
#define MFEMUL_AUTH1 5
#define MFEMUL_AUTH2 6
#define MFEMUL_WORK 7
#define MFEMUL_WRITEBL2 8
#define MFEMUL_INTREG_INC 9
#define MFEMUL_INTREG_DEC 10
#define MFEMUL_INTREG_REST 11
#define MFEMUL_HALTED 12
#define cardSTATE_TO_IDLE() cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF();
//functions
int mifare_sendcmd(uint8_t cmd, uint8_t *data, uint8_t data_size, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing);
int mifare_sendcmd(uint8_t cmd, uint8_t *data, uint8_t data_size, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing);
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing);
// mifare classic
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested);
// mifare classic
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested);
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t * ntptr, uint32_t *timing);
int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData);
int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid);
int mifare_classic_halt_ex(struct Crypto1State *pcs);
int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData);
// Ultralight/NTAG...
int mifare_ul_ev1_auth(uint8_t *key, uint8_t *pack);
int mifare_ultra_auth(uint8_t *key);
int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData);
int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData);
int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid);
int mifare_classic_halt_ex(struct Crypto1State *pcs);
int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData);
// Ultralight/NTAG...
int mifare_ul_ev1_auth(uint8_t *key, uint8_t *pack);
int mifare_ultra_auth(uint8_t *key);
int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData);
//int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData);
int mifare_ultra_writeblock(uint8_t blockNo, uint8_t *blockData);
int mifare_ultra_halt();
// desfire
int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing);
int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer,uint8_t *answer_parity, uint32_t *timing);
int mifare_desfire_des_auth1(uint32_t uid, uint8_t *blockData);
int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData);
// desfire
int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing);
int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer,uint8_t *answer_parity, uint32_t *timing);
int mifare_desfire_des_auth1(uint32_t uid, uint8_t *blockData);
int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData);
// crypto functions
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *receivedCmd, int len);
void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out);
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par);
uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data);
// Mifare memory structure
uint8_t NumBlocksPerSector(uint8_t sectorNo);
uint8_t FirstBlockOfSector(uint8_t sectorNo);
// emulator functions
void emlClearMem(void);
void emlSetMem(uint8_t *data, int blockNum, int blocksCount);
void emlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth);
void emlGetMem(uint8_t *data, int blockNum, int blocksCount);
void emlGetMemBt(uint8_t *data, int bytePtr, int byteCount);
uint64_t emlGetKey(int sectorNum, int keyType);
int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum);
void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out);
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par);
uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data);
// Mifare memory structure
uint8_t NumBlocksPerSector(uint8_t sectorNo);
uint8_t FirstBlockOfSector(uint8_t sectorNo);
// emulator functions
void emlClearMem(void);
void emlSetMem(uint8_t *data, int blockNum, int blocksCount);
void emlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth);
void emlGetMem(uint8_t *data, int blockNum, int blocksCount);
void emlGetMemBt(uint8_t *data, int bytePtr, int byteCount);
uint64_t emlGetKey(int sectorNum, int keyType);
int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum);
int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum);
int emlCheckValBl(int blockNum);