Merge pull request #48 from merlokk/mbedtls

include Mbedtls
This commit is contained in:
RFID Research Group
2018-11-11 15:42:17 +01:00
committed by GitHub
117 changed files with 53810 additions and 9604 deletions

View File

@@ -25,8 +25,10 @@ OBJDIR = obj
LDLIBS = -L/opt/local/lib -L/usr/local/lib -lreadline -lpthread -lm
LUALIB = ../liblua/liblua.a
MBEDTLSLIBPATH = ../common/mbedtls
MBEDTLSLIB = $(MBEDTLSLIBPATH)/libmbedtls.a
LDFLAGS = $(ENV_LDFLAGS)
INCLUDES_CLIENT = -I. -I../include -I../common -I../common/polarssl -I../zlib -I../uart -I/opt/local/include -I../liblua
INCLUDES_CLIENT = -I. -I../include -I../common -I../common/polarssl -I../zlib -I../uart -I/opt/local/include -I../liblua -I$(MBEDTLSLIBPATH)
CFLAGS = $(ENV_CFLAGS) -std=c99 -D_ISOC99_SOURCE -DPRESETS $(INCLUDES_CLIENT) -Wall -g -O3
CXXFLAGS = -I../include -Wall -O3
@@ -104,14 +106,8 @@ CMDSRCS = crapto1/crapto1.c \
mfkey.c \
tea.c \
polarssl/des.c \
polarssl/aes.c \
polarssl/aes_cmac128.c \
polarssl/bignum.c \
polarssl/rsa.c \
polarssl/sha1.c \
polarssl/sha256.c \
polarssl/base64.c \
polarssl/libpcrypto.c \
crypto/libpcrypto.c\
crypto/asn1utils.c\
cliparser/argtable3.c\
cliparser/cliparser.c\
loclass/cipher.c \
@@ -260,12 +256,12 @@ WINBINS = $(patsubst %, %.exe, $(BINS))
CLEAN = $(BINS) $(WINBINS) $(COREOBJS) $(CMDOBJS) $(OBJCOBJS) $(ZLIBOBJS) $(QTGUIOBJS) $(MULTIARCHOBJS) $(OBJDIR)/*.o *.moc.cpp ui/ui_overlays.h lualibs/usb_cmd.lua lualibs/mf_default_keys.lua
# need to assign dependancies to build these first...
all: lua_build $(BINS)
all: lua_build mbedtls_build $(BINS)
all-static: LDLIBS:=-static $(LDLIBS)
all-static: proxmark3 flasher fpga_compress
proxmark3: LDLIBS+=$(LUALIB) $(QTLDLIBS)
proxmark3: LDLIBS+=$(LUALIB) $(QTLDLIBS) $(MBEDTLSLIB)
proxmark3: $(OBJDIR)/proxmark3.o $(COREOBJS) $(CMDOBJS) $(OBJCOBJS) $(QTGUIOBJS) $(MULTIARCHOBJS) $(ZLIBOBJS) lualibs/usb_cmd.lua lualibs/mf_default_keys.lua
$(LD) $(LDFLAGS) $(OBJDIR)/proxmark3.o $(COREOBJS) $(CMDOBJS) $(OBJCOBJS) $(QTGUIOBJS) $(MULTIARCHOBJS) $(ZLIBOBJS) $(LDLIBS) -o $@
@@ -292,6 +288,7 @@ lualibs/mf_default_keys.lua : default_keys.dic
clean:
$(RM) $(CLEAN)
cd ../liblua && make clean
cd $(MBEDTLSLIBPATH) && make clean
tarbin: $(BINS)
$(TAR) $(TARFLAGS) ../proxmark3-$(platform)-bin.tar $(BINS:%=client/%) $(WINBINS:%=client/%)
@@ -299,7 +296,11 @@ tarbin: $(BINS)
lua_build:
@echo Compiling liblua, using platform $(LUAPLATFORM)
cd ../liblua && make $(LUAPLATFORM)
mbedtls_build:
@echo Compiling mbedtls
cd $(MBEDTLSLIBPATH) && make all
.PHONY: all clean
# easy printing of MAKE VARIABLES

View File

@@ -9,8 +9,8 @@
//-----------------------------------------------------------------------------
#include "cmdflashmem.h"
#include "rsa.h"
#include "sha1.h"
#include "mbedtls/rsa.h"
#include "mbedtls/sha1.h"
#define MCK 48000000
//#define FLASH_BAUD 24000000
@@ -358,7 +358,7 @@ int CmdFlashMemWipe(const char *Cmd){
int CmdFlashMemInfo(const char *Cmd){
uint8_t sha_hash[20] = {0};
rsa_context rsa;
mbedtls_rsa_context rsa;
uint8_t cmdp = 0;
bool errors = false, shall_write = false, shall_sign = false;
@@ -404,7 +404,7 @@ int CmdFlashMemInfo(const char *Cmd){
memcpy(&mem, (rdv40_validation_t *)resp.d.asBytes, sizeof(rdv40_validation_t));
// Flash ID hash (sha1)
sha1( mem.flashid, sizeof(mem.flashid), sha_hash );
mbedtls_sha1( mem.flashid, sizeof(mem.flashid), sha_hash );
// print header
PrintAndLogEx(INFO, "\n--- Flash memory Information ---------");
@@ -471,22 +471,22 @@ int CmdFlashMemInfo(const char *Cmd){
#define KEY_LEN 128
rsa_init(&rsa, RSA_PKCS_V15, 0);
mbedtls_rsa_init(&rsa, MBEDTLS_RSA_PKCS_V15, 0);
rsa.len = KEY_LEN;
mpi_read_string( &rsa.N , 16, RSA_N );
mpi_read_string( &rsa.E , 16, RSA_E );
mpi_read_string( &rsa.D , 16, RSA_D );
mpi_read_string( &rsa.P , 16, RSA_P );
mpi_read_string( &rsa.Q , 16, RSA_Q );
mpi_read_string( &rsa.DP, 16, RSA_DP );
mpi_read_string( &rsa.DQ, 16, RSA_DQ );
mpi_read_string( &rsa.QP, 16, RSA_QP );
mbedtls_mpi_read_string( &rsa.N , 16, RSA_N );
mbedtls_mpi_read_string( &rsa.E , 16, RSA_E );
mbedtls_mpi_read_string( &rsa.D , 16, RSA_D );
mbedtls_mpi_read_string( &rsa.P , 16, RSA_P );
mbedtls_mpi_read_string( &rsa.Q , 16, RSA_Q );
mbedtls_mpi_read_string( &rsa.DP, 16, RSA_DP );
mbedtls_mpi_read_string( &rsa.DQ, 16, RSA_DQ );
mbedtls_mpi_read_string( &rsa.QP, 16, RSA_QP );
PrintAndLogEx(INFO, "KEY length | %d", KEY_LEN);
bool is_keyok = ( rsa_check_pubkey( &rsa ) == 0 || rsa_check_privkey( &rsa ) == 0 );
bool is_keyok = ( mbedtls_rsa_check_pubkey( &rsa ) == 0 || mbedtls_rsa_check_privkey( &rsa ) == 0 );
if (is_keyok)
PrintAndLogEx(SUCCESS, "RSA key validation ok");
else
@@ -505,7 +505,7 @@ int CmdFlashMemInfo(const char *Cmd){
// Signing (private key)
if (shall_sign) {
int is_signed = rsa_pkcs1_sign( &rsa, NULL, NULL, RSA_PRIVATE, SIG_RSA_SHA1, 20, sha_hash, sign );
int is_signed = mbedtls_rsa_pkcs1_sign( &rsa, NULL, NULL, MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 20, sha_hash, sign );
if (is_signed == 0)
PrintAndLogEx(SUCCESS, "RSA Signing ok");
else
@@ -533,13 +533,13 @@ int CmdFlashMemInfo(const char *Cmd){
}
// Verify (public key)
int is_verified = rsa_pkcs1_verify( &rsa, RSA_PUBLIC, SIG_RSA_SHA1, 20, sha_hash, from_device );
int is_verified = mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL, MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 20, sha_hash, from_device );
if (is_verified == 0)
PrintAndLogEx(SUCCESS, "RSA Verification ok");
else
PrintAndLogEx(FAILED, "RSA Verification failed");
rsa_free(&rsa);
mbedtls_rsa_free(&rsa);
return 0;
}

View File

@@ -25,7 +25,7 @@
#include "cmdhf14a.h"
#include "cmdhf.h"
#include "prng.h"
#include "sha1.h"
#include "mbedtls/sha1.h"
#include "mifare.h" // structs/enum for ISO14B
#include "protocols.h" // definitions of ISO14B protocol

View File

@@ -16,7 +16,7 @@
#include <string.h>
#include <ctype.h>
#include <time.h>
#include <aes.h>
#include <mbedtls/aes.h>
#include "proxmark3.h"
#include "iso14443crc.h"
#include "ui.h"

View File

@@ -24,7 +24,7 @@
#include "mifare.h"
#include "mifare4.h"
#include "cliparser/cliparser.h"
#include "polarssl/libpcrypto.h"
#include "crypto/libpcrypto.h"
static const uint8_t DefaultKey[16] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};

63
client/crypto/asn1utils.c Normal file
View File

@@ -0,0 +1,63 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2018 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// asn.1 utils
//-----------------------------------------------------------------------------
#include "asn1utils.h"
#include <mbedtls/asn1.h>
int ecdsa_asn1_get_signature(uint8_t *signature, size_t signaturelen, uint8_t *rval, uint8_t *sval) {
if (!signature || !signaturelen || !rval || !sval)
return 1;
int res = 0;
unsigned char *p = signature;
const unsigned char *end = p + signaturelen;
size_t len;
mbedtls_mpi xmpi;
if ((res = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) == 0) {
mbedtls_mpi_init(&xmpi);
res = mbedtls_asn1_get_mpi(&p, end, &xmpi);
if (res) {
mbedtls_mpi_free(&xmpi);
goto exit;
}
res = mbedtls_mpi_write_binary(&xmpi, rval, 32);
mbedtls_mpi_free(&xmpi);
if (res)
goto exit;
mbedtls_mpi_init(&xmpi);
res = mbedtls_asn1_get_mpi(&p, end, &xmpi);
if (res) {
mbedtls_mpi_free(&xmpi);
goto exit;
}
res = mbedtls_mpi_write_binary(&xmpi, sval, 32);
mbedtls_mpi_free(&xmpi);
if (res)
goto exit;
// check size
if (end != p)
return 2;
}
exit:
return res;
}
int asn1_print(uint8_t *asn1buf, int level) {
return 0;
}

21
client/crypto/asn1utils.h Normal file
View File

@@ -0,0 +1,21 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2018 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// asn.1 utils
//-----------------------------------------------------------------------------
#ifndef ASN1UTILS_H
#define ASN1UTILS_H
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
extern int asn1_print(uint8_t *asn1buf, int level);
extern int ecdsa_asn1_get_signature(uint8_t *signature, size_t signaturelen, uint8_t *rval, uint8_t *sval);
#endif /* asn1utils.h */

381
client/crypto/libpcrypto.c Normal file
View File

@@ -0,0 +1,381 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2018 Merlok
// Copyright (C) 2018 drHatson
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// crypto commands
//-----------------------------------------------------------------------------
#include "crypto/libpcrypto.h"
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <mbedtls/asn1.h>
#include <mbedtls/aes.h>
#include <mbedtls/cmac.h>
#include <mbedtls/ecdsa.h>
#include <mbedtls/sha256.h>
#include <mbedtls/ctr_drbg.h>
#include <mbedtls/entropy.h>
#include <mbedtls/error.h>
#include <crypto/asn1utils.h>
#include <util.h>
// NIST Special Publication 800-38A — Recommendation for block cipher modes of operation: methods and techniques, 2001.
int aes_encode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length){
uint8_t iiv[16] = {0};
if (iv)
memcpy(iiv, iv, 16);
mbedtls_aes_context aes;
mbedtls_aes_init(&aes);
if (mbedtls_aes_setkey_enc(&aes, key, 128))
return 1;
if (mbedtls_aes_crypt_cbc(&aes, MBEDTLS_AES_ENCRYPT, length, iiv, input, output))
return 2;
mbedtls_aes_free(&aes);
return 0;
}
int aes_decode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length){
uint8_t iiv[16] = {0};
if (iv)
memcpy(iiv, iv, 16);
mbedtls_aes_context aes;
mbedtls_aes_init(&aes);
if (mbedtls_aes_setkey_dec(&aes, key, 128))
return 1;
if (mbedtls_aes_crypt_cbc(&aes, MBEDTLS_AES_DECRYPT, length, iiv, input, output))
return 2;
mbedtls_aes_free(&aes);
return 0;
}
// NIST Special Publication 800-38B — Recommendation for block cipher modes of operation: The CMAC mode for authentication.
// https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/AES_CMAC.pdf
int aes_cmac(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length) {
memset(mac, 0x00, 16);
// NIST 800-38B
return mbedtls_aes_cmac_prf_128(key, MBEDTLS_AES_BLOCK_SIZE, input, length, mac);
}
int aes_cmac8(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length) {
uint8_t cmac[16] = {0};
memset(mac, 0x00, 8);
int res = aes_cmac(iv, key, input, cmac, length);
if (res)
return res;
for(int i = 0; i < 8; i++)
mac[i] = cmac[i * 2 + 1];
return 0;
}
static uint8_t fixed_rand_value[250] = {0};
static int fixed_rand(void *rng_state, unsigned char *output, size_t len) {
if (len <= 250) {
memcpy(output, fixed_rand_value, len);
} else {
memset(output, 0x00, len);
}
return 0;
}
int sha256hash(uint8_t *input, int length, uint8_t *hash) {
if (!hash || !input)
return 1;
mbedtls_sha256_context sctx;
mbedtls_sha256_init(&sctx);
mbedtls_sha256_starts(&sctx, 0); // SHA-256, not 224
mbedtls_sha256_update(&sctx, input, length);
mbedtls_sha256_finish(&sctx, hash);
mbedtls_sha256_free(&sctx);
return 0;
}
int ecdsa_init_str(mbedtls_ecdsa_context *ctx, char * key_d, char *key_x, char *key_y) {
if (!ctx)
return 1;
int res;
mbedtls_ecdsa_init(ctx);
res = mbedtls_ecp_group_load(&ctx->grp, MBEDTLS_ECP_DP_SECP256R1); // secp256r1
if (res)
return res;
if (key_d) {
res = mbedtls_mpi_read_string(&ctx->d, 16, key_d);
if (res)
return res;
}
if (key_x && key_y) {
res = mbedtls_ecp_point_read_string(&ctx->Q, 16, key_x, key_y);
if (res)
return res;
}
return 0;
}
int ecdsa_init(mbedtls_ecdsa_context *ctx, uint8_t * key_d, uint8_t *key_xy) {
if (!ctx)
return 1;
int res;
mbedtls_ecdsa_init(ctx);
res = mbedtls_ecp_group_load(&ctx->grp, MBEDTLS_ECP_DP_SECP256R1); // secp256r1
if (res)
return res;
if (key_d) {
res = mbedtls_mpi_read_binary(&ctx->d, key_d, 32);
if (res)
return res;
}
if (key_xy) {
res = mbedtls_ecp_point_read_binary(&ctx->grp, &ctx->Q, key_xy, 32 * 2 + 1);
if (res)
return res;
}
return 0;
}
int ecdsa_key_create(uint8_t * key_d, uint8_t *key_xy) {
int res;
mbedtls_ecdsa_context ctx;
ecdsa_init(&ctx, NULL, NULL);
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctr_drbg;
const char *pers = "ecdsaproxmark";
mbedtls_entropy_init(&entropy);
mbedtls_ctr_drbg_init(&ctr_drbg);
res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers));
if (res)
goto exit;
res = mbedtls_ecdsa_genkey(&ctx, MBEDTLS_ECP_DP_SECP256R1, mbedtls_ctr_drbg_random, &ctr_drbg);
if (res)
goto exit;
res = mbedtls_mpi_write_binary(&ctx.d, key_d, 32);
if (res)
goto exit;
size_t keylen = 0;
uint8_t public_key[200] = {0};
res = mbedtls_ecp_point_write_binary(&ctx.grp, &ctx.Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &keylen, public_key, sizeof(public_key));
if (res)
goto exit;
if (keylen != 65) { // 0x04 <key x 32b><key y 32b>
res = 1;
goto exit;
}
memcpy(key_xy, public_key, 65);
exit:
mbedtls_entropy_free(&entropy);
mbedtls_ctr_drbg_free(&ctr_drbg);
mbedtls_ecdsa_free(&ctx);
return res;
}
char *ecdsa_get_error(int ret) {
static char retstr[300];
memset(retstr, 0x00, sizeof(retstr));
mbedtls_strerror(ret, retstr, sizeof(retstr));
return retstr;
}
int ecdsa_signature_create(uint8_t *key_d, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen) {
int res;
*signaturelen = 0;
uint8_t shahash[32] = {0};
res = sha256hash(input, length, shahash);
if (res)
return res;
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctr_drbg;
const char *pers = "ecdsaproxmark";
mbedtls_entropy_init(&entropy);
mbedtls_ctr_drbg_init(&ctr_drbg);
res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers));
if (res)
goto exit;
mbedtls_ecdsa_context ctx;
ecdsa_init(&ctx, key_d, key_xy);
res = mbedtls_ecdsa_write_signature(&ctx, MBEDTLS_MD_SHA256, shahash, sizeof(shahash), signature, signaturelen, mbedtls_ctr_drbg_random, &ctr_drbg);
exit:
mbedtls_ctr_drbg_free(&ctr_drbg);
mbedtls_ecdsa_free(&ctx);
return res;
}
int ecdsa_signature_create_test(char * key_d, char *key_x, char *key_y, char *random, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen) {
int res;
*signaturelen = 0;
uint8_t shahash[32] = {0};
res = sha256hash(input, length, shahash);
if (res)
return res;
int rndlen = 0;
param_gethex_to_eol(random, 0, fixed_rand_value, sizeof(fixed_rand_value), &rndlen);
mbedtls_ecdsa_context ctx;
ecdsa_init_str(&ctx, key_d, key_x, key_y);
res = mbedtls_ecdsa_write_signature(&ctx, MBEDTLS_MD_SHA256, shahash, sizeof(shahash), signature, signaturelen, fixed_rand, NULL);
mbedtls_ecdsa_free(&ctx);
return res;
}
int ecdsa_signature_verify_keystr(char *key_x, char *key_y, uint8_t *input, int length, uint8_t *signature, size_t signaturelen) {
int res;
uint8_t shahash[32] = {0};
res = sha256hash(input, length, shahash);
if (res)
return res;
mbedtls_ecdsa_context ctx;
ecdsa_init_str(&ctx, NULL, key_x, key_y);
res = mbedtls_ecdsa_read_signature(&ctx, shahash, sizeof(shahash), signature, signaturelen);
mbedtls_ecdsa_free(&ctx);
return res;
}
int ecdsa_signature_verify(uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t signaturelen) {
int res;
uint8_t shahash[32] = {0};
res = sha256hash(input, length, shahash);
if (res)
return res;
mbedtls_ecdsa_context ctx;
ecdsa_init(&ctx, NULL, key_xy);
res = mbedtls_ecdsa_read_signature(&ctx, shahash, sizeof(shahash), signature, signaturelen);
mbedtls_ecdsa_free(&ctx);
return res;
}
#define T_PRIVATE_KEY "C477F9F65C22CCE20657FAA5B2D1D8122336F851A508A1ED04E479C34985BF96"
#define T_Q_X "B7E08AFDFE94BAD3F1DC8C734798BA1C62B3A0AD1E9EA2A38201CD0889BC7A19"
#define T_Q_Y "3603F747959DBF7A4BB226E41928729063ADC7AE43529E61B563BBC606CC5E09"
#define T_K "7A1A7E52797FC8CAAA435D2A4DACE39158504BF204FBE19F14DBB427FAEE50AE"
#define T_R "2B42F576D07F4165FF65D1F3B1500F81E44C316F1F0B3EF57325B69ACA46104F"
#define T_S "DC42C2122D6392CD3E3A993A89502A8198C1886FE69D262C4B329BDB6B63FAF1"
int ecdsa_nist_test(bool verbose) {
int res;
uint8_t input[] = "Example of ECDSA with P-256";
int length = strlen((char *)input);
uint8_t signature[300] = {0};
size_t siglen = 0;
// NIST ecdsa test
if (verbose)
printf(" ECDSA NIST test: ");
// make signature
res = ecdsa_signature_create_test(T_PRIVATE_KEY, T_Q_X, T_Q_Y, T_K, input, length, signature, &siglen);
// printf("res: %x signature[%x]: %s\n", (res<0)?-res:res, siglen, sprint_hex(signature, siglen));
if (res)
goto exit;
// check vectors
uint8_t rval[300] = {0};
uint8_t sval[300] = {0};
res = ecdsa_asn1_get_signature(signature, siglen, rval, sval);
if (res)
goto exit;
int slen = 0;
uint8_t rval_s[33] = {0};
param_gethex_to_eol(T_R, 0, rval_s, sizeof(rval_s), &slen);
uint8_t sval_s[33] = {0};
param_gethex_to_eol(T_S, 0, sval_s, sizeof(sval_s), &slen);
if (strncmp((char *)rval, (char *)rval_s, 32) || strncmp((char *)sval, (char *)sval_s, 32)) {
printf("R or S check error\n");
res = 100;
goto exit;
}
// verify signature
res = ecdsa_signature_verify_keystr(T_Q_X, T_Q_Y, input, length, signature, siglen);
if (res)
goto exit;
// verify wrong signature
input[0] ^= 0xFF;
res = ecdsa_signature_verify_keystr(T_Q_X, T_Q_Y, input, length, signature, siglen);
if (!res) {
res = 1;
goto exit;
}
if (verbose)
printf("passed\n");
// random ecdsa test
if (verbose)
printf(" ECDSA binary signature create/check test: ");
uint8_t key_d[32] = {0};
uint8_t key_xy[32 * 2 + 2] = {0};
memset(signature, 0x00, sizeof(signature));
siglen = 0;
res = ecdsa_key_create(key_d, key_xy);
if (res)
goto exit;
res = ecdsa_signature_create(key_d, key_xy, input, length, signature, &siglen);
if (res)
goto exit;
res = ecdsa_signature_verify(key_xy, input, length, signature, siglen);
if (res)
goto exit;
input[0] ^= 0xFF;
res = ecdsa_signature_verify(key_xy, input, length, signature, siglen);
if (!res)
goto exit;
if (verbose)
printf("passed\n\n");
return 0;
exit:
if (verbose)
printf("failed\n\n");
return res;
}

View File

@@ -0,0 +1,32 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2018 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// crypto commands
//-----------------------------------------------------------------------------
#ifndef LIBPCRYPTO_H
#define LIBPCRYPTO_H
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
extern int aes_encode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length);
extern int aes_decode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length);
extern int aes_cmac(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length);
extern int aes_cmac8(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length);
extern int sha256hash(uint8_t *input, int length, uint8_t *hash);
extern int ecdsa_key_create(uint8_t * key_d, uint8_t *key_xy);
extern int ecdsa_signature_create(uint8_t *key_d, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen);
extern int ecdsa_signature_verify(uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t signaturelen);
extern char *ecdsa_get_error(int ret);
extern int ecdsa_nist_test(bool verbose);
#endif /* libpcrypto.h */

View File

@@ -24,13 +24,14 @@
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "rsa.h"
#include "sha1.h"
#include "mbedtls/rsa.h"
#include "mbedtls/sha1.h"
struct crypto_hash_polarssl {
struct crypto_hash ch;
sha1_context ctx;
mbedtls_sha1_context ctx;
};
static void crypto_hash_polarssl_close(struct crypto_hash *_ch)
@@ -44,7 +45,7 @@ static void crypto_hash_polarssl_write(struct crypto_hash *_ch, const unsigned c
{
struct crypto_hash_polarssl *ch = (struct crypto_hash_polarssl *)_ch;
sha1_update(&(ch->ctx), buf, len);
mbedtls_sha1_update(&(ch->ctx), buf, len);
}
static unsigned char *crypto_hash_polarssl_read(struct crypto_hash *_ch)
@@ -52,7 +53,7 @@ static unsigned char *crypto_hash_polarssl_read(struct crypto_hash *_ch)
struct crypto_hash_polarssl *ch = (struct crypto_hash_polarssl *)_ch;
static unsigned char sha1sum[20];
sha1_finish(&(ch->ctx), sha1sum);
mbedtls_sha1_finish(&(ch->ctx), sha1sum);
return sha1sum;
}
@@ -71,7 +72,7 @@ static struct crypto_hash *crypto_hash_polarssl_open(enum crypto_algo_hash hash)
struct crypto_hash_polarssl *ch = malloc(sizeof(*ch));
sha1_starts(&(ch->ctx));
mbedtls_sha1_starts(&(ch->ctx));
ch->ch.write = crypto_hash_polarssl_write;
ch->ch.read = crypto_hash_polarssl_read;
@@ -83,7 +84,7 @@ static struct crypto_hash *crypto_hash_polarssl_open(enum crypto_algo_hash hash)
struct crypto_pk_polarssl {
struct crypto_pk cp;
rsa_context ctx;
mbedtls_rsa_context ctx;
};
static struct crypto_pk *crypto_pk_polarssl_open_rsa(va_list vl)
@@ -96,13 +97,13 @@ static struct crypto_pk *crypto_pk_polarssl_open_rsa(va_list vl)
char *exp = va_arg(vl, char *); // E
int explen = va_arg(vl, size_t);
rsa_init(&cp->ctx, RSA_PKCS_V15, 0);
mbedtls_rsa_init(&cp->ctx, MBEDTLS_RSA_PKCS_V15, 0);
cp->ctx.len = modlen; // size(N) in bytes
mpi_read_binary(&cp->ctx.N, (const unsigned char *)mod, modlen);
mpi_read_binary(&cp->ctx.E, (const unsigned char *)exp, explen);
mbedtls_mpi_read_binary(&cp->ctx.N, (const unsigned char *)mod, modlen);
mbedtls_mpi_read_binary(&cp->ctx.E, (const unsigned char *)exp, explen);
int res = rsa_check_pubkey(&cp->ctx);
int res = mbedtls_rsa_check_pubkey(&cp->ctx);
if(res != 0) {
fprintf(stderr, "PolarSSL public key error res=%x exp=%d mod=%d.\n", res * -1, explen, modlen);
free(cp);
@@ -134,23 +135,23 @@ static struct crypto_pk *crypto_pk_polarssl_open_priv_rsa(va_list vl)
// char *inv = va_arg(vl, char *);
// int invlen = va_arg(vl, size_t);
rsa_init(&cp->ctx, RSA_PKCS_V15, 0);
mbedtls_rsa_init(&cp->ctx, MBEDTLS_RSA_PKCS_V15, 0);
cp->ctx.len = modlen; // size(N) in bytes
mpi_read_binary(&cp->ctx.N, (const unsigned char *)mod, modlen);
mpi_read_binary(&cp->ctx.E, (const unsigned char *)exp, explen);
mbedtls_mpi_read_binary(&cp->ctx.N, (const unsigned char *)mod, modlen);
mbedtls_mpi_read_binary(&cp->ctx.E, (const unsigned char *)exp, explen);
mpi_read_binary(&cp->ctx.D, (const unsigned char *)d, dlen);
mpi_read_binary(&cp->ctx.P, (const unsigned char *)p, plen);
mpi_read_binary(&cp->ctx.Q, (const unsigned char *)q, qlen);
mpi_read_binary(&cp->ctx.DP, (const unsigned char *)dp, dplen);
mpi_read_binary(&cp->ctx.DQ, (const unsigned char *)dq, dqlen);
mpi_inv_mod(&cp->ctx.QP, &cp->ctx.Q, &cp->ctx.P);
mbedtls_mpi_read_binary(&cp->ctx.D, (const unsigned char *)d, dlen);
mbedtls_mpi_read_binary(&cp->ctx.P, (const unsigned char *)p, plen);
mbedtls_mpi_read_binary(&cp->ctx.Q, (const unsigned char *)q, qlen);
mbedtls_mpi_read_binary(&cp->ctx.DP, (const unsigned char *)dp, dplen);
mbedtls_mpi_read_binary(&cp->ctx.DQ, (const unsigned char *)dq, dqlen);
mbedtls_mpi_inv_mod(&cp->ctx.QP, &cp->ctx.Q, &cp->ctx.P);
int res = rsa_check_privkey(&cp->ctx);
int res = mbedtls_rsa_check_privkey(&cp->ctx);
if(res != 0) {
fprintf(stderr, "PolarSSL private key error res=%x exp=%d mod=%d.\n", res * -1, explen, modlen);
free(cp);
free(cp);
return NULL;
}
@@ -182,10 +183,10 @@ static struct crypto_pk *crypto_pk_polarssl_genkey_rsa(va_list vl)
if (transient) {
}
int res = rsa_gen_key(&cp->ctx, &myrand, NULL, nbits, exp);
int res = mbedtls_rsa_gen_key(&cp->ctx, &myrand, NULL, nbits, exp);
if (res) {
fprintf(stderr, "PolarSSL private key generation error res=%x exp=%d nbits=%d.\n", res * -1, exp, nbits);
free(cp);
free(cp);
return NULL;
}
@@ -196,7 +197,7 @@ static void crypto_pk_polarssl_close(struct crypto_pk *_cp)
{
struct crypto_pk_polarssl *cp = (struct crypto_pk_polarssl *)_cp;
rsa_free(&cp->ctx);
mbedtls_rsa_free(&cp->ctx);
free(cp);
}
@@ -207,7 +208,7 @@ static unsigned char *crypto_pk_polarssl_encrypt(const struct crypto_pk *_cp, co
unsigned char *result;
*clen = 0;
size_t keylen = mpi_size(&cp->ctx.N);
size_t keylen = mbedtls_mpi_size(&cp->ctx.N);
result = malloc(keylen);
if (!result) {
@@ -215,9 +216,9 @@ static unsigned char *crypto_pk_polarssl_encrypt(const struct crypto_pk *_cp, co
return NULL;
}
res = rsa_public(&cp->ctx, buf, result);
if (res) {
printf("RSA encrypt failed. Error: %x data len: %zu key len: %zu\n", res * -1, len, keylen);
res = mbedtls_rsa_public(&cp->ctx, buf, result);
if(res) {
printf("RSA encrypt failed. Error: %x data len: %zd key len: %zd\n", res * -1, len, keylen);
free(result);
return NULL;
}
@@ -234,7 +235,7 @@ static unsigned char *crypto_pk_polarssl_decrypt(const struct crypto_pk *_cp, co
unsigned char *result;
*clen = 0;
size_t keylen = mpi_size(&cp->ctx.N);
size_t keylen = mbedtls_mpi_size(&cp->ctx.N);
result = malloc(keylen);
if (!result) {
@@ -242,9 +243,9 @@ static unsigned char *crypto_pk_polarssl_decrypt(const struct crypto_pk *_cp, co
return NULL;
}
res = rsa_private(&cp->ctx, buf, result); // CHECK???
res = mbedtls_rsa_private(&cp->ctx, NULL, NULL, buf, result); // CHECK???
if(res) {
printf("RSA decrypt failed. Error: %x data len: %zu key len: %zu\n", res * -1, len, keylen);
printf("RSA decrypt failed. Error: %x data len: %zd key len: %zd\n", res * -1, len, keylen);
free(result);
return NULL;
}
@@ -269,17 +270,17 @@ static unsigned char *crypto_pk_polarssl_get_parameter(const struct crypto_pk *_
switch(param){
// mod
case 0:
*plen = mpi_size(&cp->ctx.N);
*plen = mbedtls_mpi_size(&cp->ctx.N);
result = malloc(*plen);
memset(result, 0x00, *plen);
mpi_write_binary(&cp->ctx.N, result, *plen);
mbedtls_mpi_write_binary(&cp->ctx.N, result, *plen);
break;
// exp
case 1:
*plen = mpi_size(&cp->ctx.E);
*plen = mbedtls_mpi_size(&cp->ctx.E);
result = malloc(*plen);
memset(result, 0x00, *plen);
mpi_write_binary(&cp->ctx.E, result, *plen);
mbedtls_mpi_write_binary(&cp->ctx.E, result, *plen);
break;
default:
printf("Error get parameter. Param=%d", param);

View File

@@ -391,7 +391,7 @@ static unsigned long emv_value_numeric(const struct tlv *tlv, unsigned start, un
static void emv_tag_dump_numeric(const struct tlv *tlv, const struct emv_tag *tag, FILE *f, int level) {
PRINT_INDENT(level);
fprintf(f, "\tNumeric value %" PRIu32 " \n", emv_value_numeric(tlv, 0, tlv->len * 2));
fprintf(f, "\tNumeric value %lu \n", emv_value_numeric(tlv, 0, tlv->len * 2));
}
static void emv_tag_dump_yymmdd(const struct tlv *tlv, const struct emv_tag *tag, FILE *f, int level) {

View File

@@ -12,38 +12,70 @@
#include "util.h"
#include "ui.h"
#include "bignum.h"
#include "aes.h"
#include "aes_cmac128.h"
#include "des.h"
#include "rsa.h"
#include "sha1.h"
#include "mbedtls/bignum.h"
#include "mbedtls/aes.h"
#include "mbedtls/cmac.h"
#include "mbedtls/des.h"
#include "mbedtls/ecp.h"
#include "mbedtls/rsa.h"
#include "mbedtls/sha1.h"
#include "mbedtls/md5.h"
#include "mbedtls/x509.h"
#include "mbedtls/base64.h"
#include "mbedtls/ctr_drbg.h"
#include "mbedtls/entropy.h"
#include "mbedtls/timing.h"
#include "crypto_test.h"
#include "sda_test.h"
#include "dda_test.h"
#include "cda_test.h"
#include "crypto/libpcrypto.h"
int ExecuteCryptoTests(bool verbose) {
int res;
bool TestFail = false;
res = mpi_self_test(verbose);
res = mbedtls_mpi_self_test(verbose);
if (res) TestFail = true;
res = aes_self_test(verbose);
res = mbedtls_aes_self_test(verbose);
if (res) TestFail = true;
res = mbedtls_des_self_test(verbose);
if (res) TestFail = true;
res = aes_cmac_self_test(verbose);
res = mbedtls_sha1_self_test(verbose);
if (res) TestFail = true;
res = mbedtls_md5_self_test(verbose);
if (res) TestFail = true;
res = des_self_test(verbose);
res = mbedtls_rsa_self_test(verbose);
if (res) TestFail = true;
res = sha1_self_test(verbose);
res = mbedtls_entropy_self_test(verbose);
if (res) TestFail = true;
res = mbedtls_timing_self_test(verbose);
if (res) TestFail = true;
res = mbedtls_ctr_drbg_self_test(verbose);
if (res) TestFail = true;
res = rsa_self_test(verbose);
res = mbedtls_base64_self_test(verbose);
if (res) TestFail = true;
res = mbedtls_cmac_self_test(verbose);
if (res) TestFail = true;
res = ecdsa_nist_test(verbose);
if (res) TestFail = true;
res = mbedtls_ecp_self_test(verbose);
if (res) TestFail = true;
res = mbedtls_x509_self_test(verbose);
if (res) TestFail = true;
res = exec_sda_test(verbose);
@@ -58,11 +90,11 @@ int ExecuteCryptoTests(bool verbose) {
res = exec_crypto_test(verbose);
if (res) TestFail = true;
PrintAndLogEx(NORMAL, "\n--------------------------");
PrintAndLog("\n--------------------------");
if (TestFail)
PrintAndLogEx(ERR, "Test(s) [ERROR].");
PrintAndLog("Test(s) [ERROR].");
else
PrintAndLogEx(SUCCESS, "Tests [OK].");
PrintAndLog("Tests [OK].");
return TestFail;
}

View File

@@ -15,7 +15,7 @@
#include "cmdhf14a.h"
#include "util.h"
#include "ui.h"
#include "polarssl/libpcrypto.h"
#include "crypto/libpcrypto.h"
int CalculateEncIVCommand(mf4Session *session, uint8_t *iv, bool verbose) {
memcpy(&iv[0], session->TI, 4);

0
client/obj/crypto/.dummy Normal file
View File

View File

@@ -331,10 +331,10 @@ static int l_aes128decrypt_cbc(lua_State *L) {
aes_key[i / 2] = tmp & 0xFF;
}
aes_context ctx;
aes_init(&ctx);
aes_setkey_dec(&ctx, aes_key, 128);
aes_crypt_cbc(&ctx, AES_DECRYPT, sizeof(indata), iv, indata, outdata );
mbedtls_aes_context ctx;
mbedtls_aes_init(&ctx);
mbedtls_aes_setkey_dec(&ctx, aes_key, 128);
mbedtls_aes_crypt_cbc(&ctx, MBEDTLS_AES_DECRYPT, sizeof(indata), iv, indata, outdata );
//Push decrypted array as a string
lua_pushlstring(L,(const char *)&outdata, sizeof(outdata));
return 1;// return 1 to signal one return value
@@ -360,10 +360,10 @@ static int l_aes128decrypt_ecb(lua_State *L) {
sscanf(&p_key[i], "%02x", &tmp);
aes_key[i / 2] = tmp & 0xFF;
}
aes_context ctx;
aes_init(&ctx);
aes_setkey_dec(&ctx, aes_key, 128);
aes_crypt_ecb(&ctx, AES_DECRYPT, indata, outdata );
mbedtls_aes_context ctx;
mbedtls_aes_init(&ctx);
mbedtls_aes_setkey_dec(&ctx, aes_key, 128);
mbedtls_aes_crypt_ecb(&ctx, MBEDTLS_AES_DECRYPT, indata, outdata );
//Push decrypted array as a string
lua_pushlstring(L,(const char *)&outdata, sizeof(outdata));
@@ -392,10 +392,10 @@ static int l_aes128encrypt_cbc(lua_State *L) {
aes_key[i / 2] = tmp & 0xFF;
}
aes_context ctx;
aes_init(&ctx);
aes_setkey_enc(&ctx, aes_key, 128);
aes_crypt_cbc(&ctx, AES_ENCRYPT, sizeof(indata), iv, indata, outdata );
mbedtls_aes_context ctx;
mbedtls_aes_init(&ctx);
mbedtls_aes_setkey_enc(&ctx, aes_key, 128);
mbedtls_aes_crypt_cbc(&ctx, MBEDTLS_AES_ENCRYPT, sizeof(indata), iv, indata, outdata );
//Push encrypted array as a string
lua_pushlstring(L,(const char *)&outdata, sizeof(outdata));
return 1;// return 1 to signal one return value
@@ -421,10 +421,10 @@ static int l_aes128encrypt_ecb(lua_State *L) {
sscanf(&p_key[i], "%02x", &tmp);
aes_key[i / 2] = tmp & 0xFF;
}
aes_context ctx;
aes_init(&ctx);
aes_setkey_enc(&ctx, aes_key, 128);
aes_crypt_ecb(&ctx, AES_ENCRYPT, indata, outdata );
mbedtls_aes_context ctx;
mbedtls_aes_init(&ctx);
mbedtls_aes_setkey_enc(&ctx, aes_key, 128);
mbedtls_aes_crypt_ecb(&ctx, MBEDTLS_AES_ENCRYPT, indata, outdata );
//Push encrypted array as a string
lua_pushlstring(L,(const char *)&outdata, sizeof(outdata));
return 1;// return 1 to signal one return value
@@ -498,7 +498,7 @@ static int l_sha1(lua_State *L) {
size_t size;
const char *p_str = luaL_checklstring(L, 1, &size);
unsigned char outdata[20] = {0x00};
sha1( (uint8_t*) p_str, size, outdata);
mbedtls_sha1( (uint8_t*) p_str, size, outdata);
lua_pushlstring(L, (const char *)&outdata, sizeof(outdata));
return 1;
}

View File

@@ -23,8 +23,8 @@
#include "crc.h"
#include "crc16.h"
#include "crc64.h"
#include "sha1.h"
#include "aes.h"
#include "mbedtls/sha1.h"
#include "mbedtls/aes.h"
#include "cmdcrc.h"
#include "cmdhfmfhard.h"
#include "cmdhfmfu.h"