Files
blackcoin-more/src/test/util_tests.cpp
Gregory Maxwell 907a2aa4c7 Internal RNG for approximateBestSubset to prevent degenerate behavior.
This fixes test_bitcoin failures on openbsd reported by dhill on IRC.

  On some systems rand() is a simple LCG over 2^31 and so it produces
an even-odd sequence.  ApproximateBestSubset was only using the least
significant bit and so every run of the iterative solver would be the
same for some inputs, resulting in some pretty dumb decisions.

Using something other than the least significant bit would paper over
the issue but who knows what other way a system's rand() might get us
here.  Instead we use an internal RNG with a period of something like
2^60 which is well behaved.  This also makes it possible to make the
selection deterministic for the tests, if we wanted to implement that.
2013-02-18 14:13:39 -08:00

327 lines
11 KiB
C++

#include <vector>
#include <boost/test/unit_test.hpp>
#include <boost/foreach.hpp>
#include "main.h"
#include "wallet.h"
#include "util.h"
using namespace std;
BOOST_AUTO_TEST_SUITE(util_tests)
BOOST_AUTO_TEST_CASE(util_criticalsection)
{
CCriticalSection cs;
do {
LOCK(cs);
break;
BOOST_ERROR("break was swallowed!");
} while(0);
do {
TRY_LOCK(cs, lockTest);
if (lockTest)
break;
BOOST_ERROR("break was swallowed!");
} while(0);
}
BOOST_AUTO_TEST_CASE(util_MedianFilter)
{
CMedianFilter<int> filter(5, 15);
BOOST_CHECK_EQUAL(filter.median(), 15);
filter.input(20); // [15 20]
BOOST_CHECK_EQUAL(filter.median(), 17);
filter.input(30); // [15 20 30]
BOOST_CHECK_EQUAL(filter.median(), 20);
filter.input(3); // [3 15 20 30]
BOOST_CHECK_EQUAL(filter.median(), 17);
filter.input(7); // [3 7 15 20 30]
BOOST_CHECK_EQUAL(filter.median(), 15);
filter.input(18); // [3 7 18 20 30]
BOOST_CHECK_EQUAL(filter.median(), 18);
filter.input(0); // [0 3 7 18 30]
BOOST_CHECK_EQUAL(filter.median(), 7);
}
static const unsigned char ParseHex_expected[65] = {
0x04, 0x67, 0x8a, 0xfd, 0xb0, 0xfe, 0x55, 0x48, 0x27, 0x19, 0x67, 0xf1, 0xa6, 0x71, 0x30, 0xb7,
0x10, 0x5c, 0xd6, 0xa8, 0x28, 0xe0, 0x39, 0x09, 0xa6, 0x79, 0x62, 0xe0, 0xea, 0x1f, 0x61, 0xde,
0xb6, 0x49, 0xf6, 0xbc, 0x3f, 0x4c, 0xef, 0x38, 0xc4, 0xf3, 0x55, 0x04, 0xe5, 0x1e, 0xc1, 0x12,
0xde, 0x5c, 0x38, 0x4d, 0xf7, 0xba, 0x0b, 0x8d, 0x57, 0x8a, 0x4c, 0x70, 0x2b, 0x6b, 0xf1, 0x1d,
0x5f
};
BOOST_AUTO_TEST_CASE(util_ParseHex)
{
std::vector<unsigned char> result;
std::vector<unsigned char> expected(ParseHex_expected, ParseHex_expected + sizeof(ParseHex_expected));
// Basic test vector
result = ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f");
BOOST_CHECK_EQUAL_COLLECTIONS(result.begin(), result.end(), expected.begin(), expected.end());
// Spaces between bytes must be supported
result = ParseHex("12 34 56 78");
BOOST_CHECK(result.size() == 4 && result[0] == 0x12 && result[1] == 0x34 && result[2] == 0x56 && result[3] == 0x78);
// Stop parsing at invalid value
result = ParseHex("1234 invalid 1234");
BOOST_CHECK(result.size() == 2 && result[0] == 0x12 && result[1] == 0x34);
}
BOOST_AUTO_TEST_CASE(util_HexStr)
{
BOOST_CHECK_EQUAL(
HexStr(ParseHex_expected, ParseHex_expected + sizeof(ParseHex_expected)),
"04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f");
BOOST_CHECK_EQUAL(
HexStr(ParseHex_expected, ParseHex_expected + 5, true),
"04 67 8a fd b0");
BOOST_CHECK_EQUAL(
HexStr(ParseHex_expected, ParseHex_expected, true),
"");
std::vector<unsigned char> ParseHex_vec(ParseHex_expected, ParseHex_expected + 5);
BOOST_CHECK_EQUAL(
HexStr(ParseHex_vec, true),
"04 67 8a fd b0");
}
BOOST_AUTO_TEST_CASE(util_DateTimeStrFormat)
{
/*These are platform-dependant and thus removed to avoid useless test failures
BOOST_CHECK_EQUAL(DateTimeStrFormat("%Y-%m-%d %H:%M:%S", 0), "1970-01-01 00:00:00");
BOOST_CHECK_EQUAL(DateTimeStrFormat("%Y-%m-%d %H:%M:%S", 0x7FFFFFFF), "2038-01-19 03:14:07");
// Formats used within Bitcoin
BOOST_CHECK_EQUAL(DateTimeStrFormat("%Y-%m-%d %H:%M:%S", 1317425777), "2011-09-30 23:36:17");
BOOST_CHECK_EQUAL(DateTimeStrFormat("%Y-%m-%d %H:%M", 1317425777), "2011-09-30 23:36");
*/
}
BOOST_AUTO_TEST_CASE(util_ParseParameters)
{
const char *argv_test[] = {"-ignored", "-a", "-b", "-ccc=argument", "-ccc=multiple", "f", "-d=e"};
ParseParameters(0, (char**)argv_test);
BOOST_CHECK(mapArgs.empty() && mapMultiArgs.empty());
ParseParameters(1, (char**)argv_test);
BOOST_CHECK(mapArgs.empty() && mapMultiArgs.empty());
ParseParameters(5, (char**)argv_test);
// expectation: -ignored is ignored (program name argument),
// -a, -b and -ccc end up in map, -d ignored because it is after
// a non-option argument (non-GNU option parsing)
BOOST_CHECK(mapArgs.size() == 3 && mapMultiArgs.size() == 3);
BOOST_CHECK(mapArgs.count("-a") && mapArgs.count("-b") && mapArgs.count("-ccc")
&& !mapArgs.count("f") && !mapArgs.count("-d"));
BOOST_CHECK(mapMultiArgs.count("-a") && mapMultiArgs.count("-b") && mapMultiArgs.count("-ccc")
&& !mapMultiArgs.count("f") && !mapMultiArgs.count("-d"));
BOOST_CHECK(mapArgs["-a"] == "" && mapArgs["-ccc"] == "multiple");
BOOST_CHECK(mapMultiArgs["-ccc"].size() == 2);
}
BOOST_AUTO_TEST_CASE(util_GetArg)
{
mapArgs.clear();
mapArgs["strtest1"] = "string...";
// strtest2 undefined on purpose
mapArgs["inttest1"] = "12345";
mapArgs["inttest2"] = "81985529216486895";
// inttest3 undefined on purpose
mapArgs["booltest1"] = "";
// booltest2 undefined on purpose
mapArgs["booltest3"] = "0";
mapArgs["booltest4"] = "1";
BOOST_CHECK_EQUAL(GetArg("strtest1", "default"), "string...");
BOOST_CHECK_EQUAL(GetArg("strtest2", "default"), "default");
BOOST_CHECK_EQUAL(GetArg("inttest1", -1), 12345);
BOOST_CHECK_EQUAL(GetArg("inttest2", -1), 81985529216486895LL);
BOOST_CHECK_EQUAL(GetArg("inttest3", -1), -1);
BOOST_CHECK_EQUAL(GetBoolArg("booltest1"), true);
BOOST_CHECK_EQUAL(GetBoolArg("booltest2"), false);
BOOST_CHECK_EQUAL(GetBoolArg("booltest3"), false);
BOOST_CHECK_EQUAL(GetBoolArg("booltest4"), true);
}
BOOST_AUTO_TEST_CASE(util_WildcardMatch)
{
BOOST_CHECK(WildcardMatch("127.0.0.1", "*"));
BOOST_CHECK(WildcardMatch("127.0.0.1", "127.*"));
BOOST_CHECK(WildcardMatch("abcdef", "a?cde?"));
BOOST_CHECK(!WildcardMatch("abcdef", "a?cde??"));
BOOST_CHECK(WildcardMatch("abcdef", "a*f"));
BOOST_CHECK(!WildcardMatch("abcdef", "a*x"));
BOOST_CHECK(WildcardMatch("", "*"));
}
BOOST_AUTO_TEST_CASE(util_FormatMoney)
{
BOOST_CHECK_EQUAL(FormatMoney(0, false), "0.00");
BOOST_CHECK_EQUAL(FormatMoney((COIN/10000)*123456789, false), "12345.6789");
BOOST_CHECK_EQUAL(FormatMoney(COIN, true), "+1.00");
BOOST_CHECK_EQUAL(FormatMoney(-COIN, false), "-1.00");
BOOST_CHECK_EQUAL(FormatMoney(-COIN, true), "-1.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN*100000000, false), "100000000.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN*10000000, false), "10000000.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN*1000000, false), "1000000.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN*100000, false), "100000.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN*10000, false), "10000.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN*1000, false), "1000.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN*100, false), "100.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN*10, false), "10.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN, false), "1.00");
BOOST_CHECK_EQUAL(FormatMoney(COIN/10, false), "0.10");
BOOST_CHECK_EQUAL(FormatMoney(COIN/100, false), "0.01");
BOOST_CHECK_EQUAL(FormatMoney(COIN/1000, false), "0.001");
BOOST_CHECK_EQUAL(FormatMoney(COIN/10000, false), "0.0001");
BOOST_CHECK_EQUAL(FormatMoney(COIN/100000, false), "0.00001");
BOOST_CHECK_EQUAL(FormatMoney(COIN/1000000, false), "0.000001");
BOOST_CHECK_EQUAL(FormatMoney(COIN/10000000, false), "0.0000001");
BOOST_CHECK_EQUAL(FormatMoney(COIN/100000000, false), "0.00000001");
}
BOOST_AUTO_TEST_CASE(util_ParseMoney)
{
int64 ret = 0;
BOOST_CHECK(ParseMoney("0.0", ret));
BOOST_CHECK_EQUAL(ret, 0);
BOOST_CHECK(ParseMoney("12345.6789", ret));
BOOST_CHECK_EQUAL(ret, (COIN/10000)*123456789);
BOOST_CHECK(ParseMoney("100000000.00", ret));
BOOST_CHECK_EQUAL(ret, COIN*100000000);
BOOST_CHECK(ParseMoney("10000000.00", ret));
BOOST_CHECK_EQUAL(ret, COIN*10000000);
BOOST_CHECK(ParseMoney("1000000.00", ret));
BOOST_CHECK_EQUAL(ret, COIN*1000000);
BOOST_CHECK(ParseMoney("100000.00", ret));
BOOST_CHECK_EQUAL(ret, COIN*100000);
BOOST_CHECK(ParseMoney("10000.00", ret));
BOOST_CHECK_EQUAL(ret, COIN*10000);
BOOST_CHECK(ParseMoney("1000.00", ret));
BOOST_CHECK_EQUAL(ret, COIN*1000);
BOOST_CHECK(ParseMoney("100.00", ret));
BOOST_CHECK_EQUAL(ret, COIN*100);
BOOST_CHECK(ParseMoney("10.00", ret));
BOOST_CHECK_EQUAL(ret, COIN*10);
BOOST_CHECK(ParseMoney("1.00", ret));
BOOST_CHECK_EQUAL(ret, COIN);
BOOST_CHECK(ParseMoney("0.1", ret));
BOOST_CHECK_EQUAL(ret, COIN/10);
BOOST_CHECK(ParseMoney("0.01", ret));
BOOST_CHECK_EQUAL(ret, COIN/100);
BOOST_CHECK(ParseMoney("0.001", ret));
BOOST_CHECK_EQUAL(ret, COIN/1000);
BOOST_CHECK(ParseMoney("0.0001", ret));
BOOST_CHECK_EQUAL(ret, COIN/10000);
BOOST_CHECK(ParseMoney("0.00001", ret));
BOOST_CHECK_EQUAL(ret, COIN/100000);
BOOST_CHECK(ParseMoney("0.000001", ret));
BOOST_CHECK_EQUAL(ret, COIN/1000000);
BOOST_CHECK(ParseMoney("0.0000001", ret));
BOOST_CHECK_EQUAL(ret, COIN/10000000);
BOOST_CHECK(ParseMoney("0.00000001", ret));
BOOST_CHECK_EQUAL(ret, COIN/100000000);
// Attempted 63 bit overflow should fail
BOOST_CHECK(!ParseMoney("92233720368.54775808", ret));
}
BOOST_AUTO_TEST_CASE(util_IsHex)
{
BOOST_CHECK(IsHex("00"));
BOOST_CHECK(IsHex("00112233445566778899aabbccddeeffAABBCCDDEEFF"));
BOOST_CHECK(IsHex("ff"));
BOOST_CHECK(IsHex("FF"));
BOOST_CHECK(!IsHex(""));
BOOST_CHECK(!IsHex("0"));
BOOST_CHECK(!IsHex("a"));
BOOST_CHECK(!IsHex("eleven"));
BOOST_CHECK(!IsHex("00xx00"));
BOOST_CHECK(!IsHex("0x0000"));
}
BOOST_AUTO_TEST_CASE(util_seed_insecure_rand)
{
// Expected results for the determinstic seed.
const uint32_t exp_vals[11] = { 91632771U,1889679809U,3842137544U,3256031132U,
1761911779U, 489223532U,2692793790U,2737472863U,
2796262275U,1309899767U,840571781U};
// Expected 0s in rand()%(idx+2) for the determinstic seed.
const int exp_count[9] = {5013,3346,2415,1972,1644,1386,1176,1096,1009};
int i;
int count=0;
seed_insecure_rand();
//Does the non-determistic rand give us results that look too like the determinstic one?
for (i=0;i<10;i++)
{
int match = 0;
uint32_t rval = insecure_rand();
for (int j=0;j<11;j++)match |= rval==exp_vals[j];
count += match;
}
// sum(binomial(10,i)*(11/(2^32))^i*(1-(11/(2^32)))^(10-i),i,0,4) ~= 1-1/2^134.73
// So _very_ unlikely to throw a false failure here.
BOOST_CHECK(count<=4);
for (int mod=2;mod<11;mod++)
{
int mask = 1;
// Really rough binomal confidence approximation.
int err = 30*10000./mod*sqrt((1./mod*(1-1./mod))/10000.);
//mask is 2^ceil(log2(mod))-1
while(mask<mod-1)mask=(mask<<1)+1;
count = 0;
//How often does it get a zero from the uniform range [0,mod)?
for (i=0;i<10000;i++)
{
uint32_t rval;
do{
rval=insecure_rand()&mask;
}while(rval>=(uint32_t)mod);
count += rval==0;
}
BOOST_CHECK(count<=10000/mod+err);
BOOST_CHECK(count>=10000/mod-err);
}
seed_insecure_rand(true);
for (i=0;i<11;i++)
{
BOOST_CHECK_EQUAL(insecure_rand(),exp_vals[i]);
}
for (int mod=2;mod<11;mod++)
{
count = 0;
for (i=0;i<10000;i++) count += insecure_rand()%mod==0;
BOOST_CHECK_EQUAL(count,exp_count[mod-2]);
}
}
BOOST_AUTO_TEST_SUITE_END()